
	

https://sezuwaj.godoxevez.com/79049209964683509159991699377874707299387?zejinuxuzonuwitiziparilumudesogivuzoxakesivajimaraxesugunariwagokodikaxoletub=goriwoxetamagewasudelinazogigibopupidudijawigulirisefepivomomudujisulunukubujarubejolexaripatisemokilupevogafusanamerozewodamonefawajapilegezetugowisemimutevebumadumisumibonilizasojodabalavegakenepokozerikif&utm_term=java+oops+interview+questions+and+answers+for+5+years+experience&petemokaxotazudetajepawobuvujijobefopajoxobezisoruzerugafawulolarogakapujesaxitujug=fakuzetiruduzilavimipojisujavepigotepawozajolofadadewugezewelanowoxozuxapituvagizaguvibexuxotejusapexapoxonisamefavuvukugolapiwujekima

Updated	on	October	18,	2021	by	Arpit	Mandliya	5.3K	Do	you	need	help	preparing	for	your	Java	OOPS	interview?	Object-oriented	programming	(OOP)	is	a	core	aspect	of	Java,	and	a	strong	understanding	of	its	principles	is	essential.	This	guide	covers	the	top	50	Java	OOPS	interview	questions	and	answers,	addressing	both	fundamental	and	advanced
topics.		With	clear	explanations	and	practical	examples,	these	questions	will	help	you	approach	technical	rounds	with	confidence.	Fun	Fact:	According	to	the	TIOBE	Index	(2025),	Java	remains	a	top	5	programming	language,	with	over	9	million	developers	using	it.	A	major	reason	for	its	popularity	is	its	strong	OOPS	foundation.	Here	is	a	list	of	basic
Java	Object	Oriented	Programming	questions	and	answers	for	interviews:		What	are	the	four	main	principles	of	Object-Oriented	Programming?	The	four	main	principles	of	OOPS	are:	Encapsulation	–	Wrapping	data	and	methods	into	a	single	unit	(class)	to	restrict	direct	access	to	data.	Abstraction	–	Hiding	implementation	details	and	exposing	only
necessary	functionalities	using	abstract	classes	or	interfaces.	Inheritance	–	Allowing	one	class	(child)	to	inherit	properties	and	methods	from	another	(parent)	to	promote	reusability.	Polymorphism	–	Allowing	a	single	method	or	operator	to	have	multiple	implementations	(method	overloading	and	method	overriding).	How	is	abstraction	different	from
encapsulation	in	Java?	Abstraction	hides	unnecessary	details	and	exposes	only	the	essential	parts.	It	is	implemented	using	abstract	classes	and	interfaces.	Encapsulation,	on	the	other	hand,	restricts	direct	access	to	an	object’s	data	by	using	access	modifiers	like	private,	protected,	and	public.	While	abstraction	is	about	hiding	implementation,
encapsulation	is	about	data	security	and	integrity.	What	is	method	overloading	and	method	overriding?	Provide	examples.	Method	Overloading:	When	multiple	methods	in	the	same	class	have	the	same	name	but	different	parameter	lists.		Example:	class	MathOperations	{					int	add(int	a,	int	b)	{	return	a	+	b;	}					double	add(double	a,	double	b)	{
return	a	+	b;	}	}	Method	Overriding:	When	a	subclass	provides	a	specific	implementation	of	a	method	already	defined	in	its	superclass.	Example:	class	Parent	{					void	display()	{	System.out.println(“Parent	class	method”);	}	}	class	Child	extends	Parent	{					@Override					void	display()	{	System.out.println(“Child	class	method”);	}	}	Why	is	multiple
inheritance	not	supported	in	Java?	Multiple	inheritance	is	not	supported	in	Java	to	avoid	ambiguity	issues	caused	by	the	diamond	problem.	If	two	parent	classes	have	the	same	method,	the	compiler	cannot	determine	which	one	to	inherit.	Instead,	Java	provides	interfaces,	allowing	a	class	to	implement	multiple	interfaces	without	ambiguity.	Here	are
some	common	Java	Object	Oriented	Programming	interview	questions	for	freshers:		What	is	the	difference	between	a	class	and	an	object?	A	class	is	a	blueprint	for	creating	objects.	It	defines	attributes	(variables)	and	behaviors	(methods).	An	object	is	an	instance	of	a	class	with	specific	values	assigned	to	its	attributes.	Example:	class	Car	{					String
brand;					void	drive()	{	System.out.println(“Car	is	driving”);	}	}	Car	myCar	=	new	Car();	//	Object	creation	What	is	the	significance	of	the	‘this’	keyword	in	Java?	See	also		Top	25+	Computer	Vision	Interview	Questions	and	AnswersThe	this	keyword	refers	to	the	current	instance	of	a	class.	It	is	used	to:	Differentiate	instance	variables	from	local
variables	when	they	have	the	same	name.	Call	another	constructor	in	the	same	class.	Pass	the	current	instance	as	a	parameter.	Example:	class	Employee	{					String	name;					Employee(String	name)	{	this.name	=	name;	}	}	How	does	Java	achieve	runtime	polymorphism?	Java	achieves	runtime	polymorphism	through	method	overriding.	The	overridden
method	in	a	subclass	is	called	at	runtime	based	on	the	object	type,	even	when	referenced	by	a	parent	class.	Example:	class	Animal	{					void	sound()	{	System.out.println(“Animal	makes	a	sound”);	}	}	class	Dog	extends	Animal	{					void	sound()	{	System.out.println(“Dog	barks”);	}	}	Animal	obj	=	new	Dog();	obj.sound();	//	Outputs:	Dog	barks	What	is
the	purpose	of	the	‘super’	keyword	in	Java?	The	super	keyword	is	used	to	refer	to	the	immediate	parent	class.	It	can	be	used	to:	Call	the	parent	class	constructor.	Access	parent	class	methods.	Access	parent	class	variables.	Example:	class	Parent	{					void	display()	{	System.out.println(“Parent	method”);	}	}	class	Child	extends	Parent	{					void	show()	{
super.display();	}	}	Let’s	go	through	important	Java	OOPS	programming	interview	questions	and	answers	for	experienced	candidates:		How	does	Java	manage	memory	with	respect	to	objects?	Java	uses	automatic	memory	management	with	the	help	of	the	Garbage	Collector	(GC).	When	an	object	is	no	longer	referenced,	the	GC	removes	it	to	free	up
memory.	Java	memory	consists	of:	Heap	(stores	objects).	Stack	(stores	method	calls	and	local	variables).	Method	area	(stores	class	structures).	What	are	the	different	types	of	constructors	in	Java?	Default	Constructor	–	No	parameters,	initializes	objects	with	default	values.	Parameterized	Constructor	–	Takes	arguments	to	initialize	instance	variables.
Copy	Constructor	–	Copies	values	from	one	object	to	another.	Example:	class	Student	{					String	name;					Student(String	name)	{	this.name	=	name;	}	}	How	is	object	cloning	implemented	in	Java?	Java	supports	shallow	cloning	using	the	clone()	method	from	the	Cloneable	interface.	Example:	class	Employee	implements	Cloneable	{					String	name;
				Employee(String	name)	{	this.name	=	name;	}					protected	Object	clone()	throws	CloneNotSupportedException	{									return	super.clone();					}	}	Deep	cloning	requires	manual	copying	of	referenced	objects.	What	is	a	shallow	copy	and	deep	copy	in	Java?	Shallow	Copy:	Copies	field	values	but	does	not	create	new	referenced	objects.	Changes	in	the
original	object	affect	the	copied	object.	Deep	Copy:	Creates	a	new	copy	of	referenced	objects,	making	them	independent.	Example	of	deep	copy:	class	Address	{					String	city;					Address(String	city)	{	this.city	=	city;	}	}	class	Person	{					String	name;					Address	address;					Person(String	name,	Address	address)	{									this.name	=	name;
								this.address	=	new	Address(address.city);	//	Deep	Copy					}	}	If	you	have	2	years	of	experience,	you	might	come	across	such	Java	and	OOPS	interview	questions:	Why	did	you	choose	Java	for	your	career?	Describe	a	situation	where	you	had	to	debug	a	complex	object-oriented	issue.	How	did	you	solve	it?	If	you	had	to	redesign	an	existing	system	to
improve	reusability,	which	OOPS	principles	would	you	focus	on	and	why?	These	interview	questions	for	OOPS	in	Java	are	for	candidates	with	three	years	of	experience:		What	is	the	most	challenging	Java	project	you	have	worked	on?	How	do	you	handle	a	situation	where	your	team	disagrees	on	the	best	OOPS	approach	for	a	project?	If	you	need	to
implement	a	flexible	payment	system,	which	OOPS	concepts	would	you	apply	and	how?	See	also		Top	45+	Database	Testing	Interview	Questions	and	Answers	These	Java	Object	Oriented	interview	questions	are	for	candidates	with	5	years	of	experience:		What	design	patterns	have	you	used	in	your	Java	projects,	and	why?	How	do	you	mentor	junior
developers	on	OOPS	principles?	You	need	to	refactor	a	monolithic	Java	application	into	a	microservices-based	architecture.	How	would	you	approach	the	OOPS	design?	If	you	are	at	a	senior	level	and	have	around	10	years	of	experience,	you	might	come	across	such	Java	OOPS	interview	questions:	How	has	your	understanding	of	OOPS	evolved	over	the
years?	Have	you	ever	had	to	optimize	an	object-oriented	Java	system	for	performance?	How	did	you	do	it?	Given	an	existing	Java	application	with	tight	coupling,	how	would	you	refactor	it	to	follow	SOLID	principles?	You	might	also	come	across	OOPS	concepts	in	Java	interview	questions	like	these:		What	is	the	difference	between	an	interface	and	an
abstract	class?	An	interface	defines	a	contract	that	classes	must	follow.	It	contains	only	abstract	methods	(before	Java	8)	and	allows	default	and	static	methods	(from	Java	8).	Interfaces	support	multiple	inheritance	since	a	class	can	implement	multiple	interfaces.	An	abstract	class	can	have	both	abstract	and	concrete	methods.	It	can	include
constructors	and	instance	variables.	Unlike	interfaces,	abstract	classes	can	have	method	implementations	but	do	not	support	multiple	inheritance.	How	does	Java	implement	multiple	inheritance?	Java	does	not	support	multiple	inheritance	through	classes	to	avoid	ambiguity	(diamond	problem).	Instead,	it	uses	interfaces.	A	class	can	implement
multiple	interfaces,	allowing	it	to	inherit	behaviors	from	different	sources	without	conflicts.	What	is	dynamic	method	dispatch	in	Java?	Dynamic	method	dispatch,	also	called	runtime	polymorphism,	is	the	process	where	method	calls	are	resolved	at	runtime	based	on	the	object’s	actual	type,	not	the	reference	type.	These	are	some	core	Java	OOP
questions	and	answers	for	interviews:		What	is	an	association,	aggregation,	and	composition	in	Java?	Association:	A	relationship	between	two	classes	where	both	objects	exist	independently	(e.g.,	Student	and	Teacher).	Aggregation:	A	weaker	relationship	where	the	child	can	exist	independently,	but	the	parent	owns	it	(e.g.,	Department	and	Employee).
Composition:	A	strong	relationship	where	the	child	object’s	existence	depends	on	the	parent	(e.g.,	Car	and	Engine).	What	is	the	role	of	access	modifiers	in	OOPS?	Access	modifiers	control	visibility	of	class	members:	private	–	Accessible	only	within	the	class.	default	–	Accessible	within	the	same	package.	protected	–	Accessible	in	the	same	package	and
subclasses.	public	–	Accessible	from	anywhere.	Let’s	go	through	some	advanced	Java	Object	Oriented	interview	questions	and	answers:		What	are	the	different	types	of	design	patterns	in	Java?	Creational	Patterns	–	Singleton,	Factory,	Builder.	Structural	Patterns	–	Adapter,	Composite,	Proxy.	Behavioral	Patterns	–	Strategy,	Observer,	Command.	How
do	lambda	expressions	fit	into	Java’s	object-oriented	model?	Lambda	expressions	provide	a	concise	way	to	implement	functional	interfaces	(interfaces	with	a	single	abstract	method).	They	allow	inline	implementations	without	creating	a	separate	class.	Example:	interface	Calculator	{					int	operate(int	a,	int	b);	}	Calculator	add	=	(a,	b)	->	a	+	b;
System.out.println(add.operate(5,	3));	//	Outputs:	8	What	is	the	function	of	reflection	in	Java	OOPS?	Reflection	allows	introspection	and	manipulation	of	classes,	methods,	and	fields	at	runtime.	It	is	useful	in	frameworks,	serialization,	and	dependency	injection.	See	also		Top	25+	Performance	Testing	Interview	Questions	and	AnswersExample:	Class	obj
=	Class.forName(“java.util.ArrayList”);	System.out.println(obj.getMethods());	Also	Read	-	Top	25+	Python	OOPs	Interview	Question	(2025)	You	should	also	take	a	look	at	these	OOPS	in	JavaScript	interview	questions:		How	is	object-oriented	programming	implemented	in	JavaScript?	JavaScript	is	prototype-based,	meaning	objects	inherit	from	other
objects	instead	of	classes.	Objects	can	be	created	using	constructors,	prototypes,	or	ES6	classes.	What	is	prototypal	inheritance,	and	how	does	it	differ	from	classical	inheritance?	Prototypal	inheritance	allows	objects	to	inherit	properties	directly	from	another	object	using	the	prototype	chain.	Unlike	classical	inheritance,	which	relies	on	class
hierarchies,	JavaScript	objects	inherit	dynamically.	Example:	let	parent	=	{	greet:	function()	{	console.log(“Hello”);	}	};	let	child	=	Object.create(parent);	child.greet();	//	Outputs:	Hello	Also	Read	-	Top	20	PHP	OOPs	Interview	Questions	and	Answers	Here	are	some	coding	Java	object	oriented	interview	questions:	Write	a	Java	program	to	demonstrate
method	overriding.	class	Parent	{					void	show()	{	System.out.println(“Parent	class	method”);	}	}	class	Child	extends	Parent	{					@Override					void	show()	{	System.out.println(“Child	class	method”);	}	}	public	class	Test	{					public	static	void	main(String[]	args)	{									Parent	obj	=	new	Child();									obj.show();	//	Outputs:	Child	class	method					}	}
Implement	a	singleton	class	in	Java.	class	Singleton	{					private	static	Singleton	instance;					private	Singleton()	{}	//	Private	constructor					public	static	Singleton	getInstance()	{									if	(instance	==	null)	{													instance	=	new	Singleton();									}									return	instance;					}	}	Create	an	interface	and	implement	it	in	multiple	classes	with	different
behaviors.	interface	Animal	{					void	sound();	}	class	Dog	implements	Animal	{					public	void	sound()	{	System.out.println(“Dog	barks”);	}	}	class	Cat	implements	Animal	{					public	void	sound()	{	System.out.println(“Cat	meows”);	}	}	public	class	Test	{					public	static	void	main(String[]	args)	{									Animal	a1	=	new	Dog();									Animal	a2	=	new
Cat();									a1.sound();									a2.sound();					}	}	Also	Read	-	Top	20	C++	OOPs	Interview	Questions	and	Answers	Implement	a	real-world	example	of	polymorphism	in	Java.	Create	a	Java	class	that	follows	the	principle	of	encapsulation.	Write	a	Java	program	to	demonstrate	the	Factory	Design	Pattern.	Implement	an	abstract	class	with	a	concrete	method
and	abstract	methods.	Also	Read	-	Top	30+	C#	OOPs	Interview	Questions	and	Answers	What	is	the	difference	between	instance	and	static	methods?	How	does	Java	handle	object	destruction?	Can	a	constructor	be	private?	If	yes,	when	would	you	use	it?	What	is	the	difference	between	early	binding	and	late	binding	in	Java?	Also	Read	-	Top	20	OOPs
ABAP	Interview	Questions	and	Answers	Here	are	some	common	interview	questions	for	OOPS	in	Java	in	MCQ	form:		Which	of	the	following	is	not	an	OOPS	principle?	a)	Encapsulationb)	Inheritancec)	Compilationd)	Polymorphism	Programming	paradigm	based	on	the	concept	of	objects	"Object-oriented"	redirects	here.	For	other	meanings	of	object-
oriented,	see	Object-orientation.	UML	notation	for	a	class.	This	Button	class	has	variables	for	data,	and	functions.	Through	inheritance,	a	subclass	can	be	created	as	a	subset	of	the	Button	class.	Objects	are	instances	of	a	class.	Object-oriented	programming	(OOP)	is	a	programming	paradigm	based	on	the	concept	of	objects.[1]	Objects	can	contain	data
(called	fields,	attributes	or	properties)	and	have	actions	they	can	perform	(called	procedures	or	methods	and	implemented	in	code).	In	OOP,	computer	programs	are	designed	by	making	them	out	of	objects	that	interact	with	one	another.[2][3]	Many	of	the	most	widely	used	programming	languages	(such	as	C++,	Java,[4]	and	Python)	support	object-
oriented	programming	to	a	greater	or	lesser	degree,	typically	as	part	of	multiple	paradigms	in	combination	with	others	such	as	imperative	programming	and	declarative	programming.	Significant	object-oriented	languages	include	Ada,	ActionScript,	C++,	Common	Lisp,	C#,	Dart,	Eiffel,	Fortran	2003,	Haxe,	Java,[4]	JavaScript,	Kotlin,	Logo,	MATLAB,
Objective-C,	Object	Pascal,	Perl,	PHP,	Python,	R,	Raku,	Ruby,	Scala,	SIMSCRIPT,	Simula,	Smalltalk,	Swift,	Vala	and	Visual	Basic.NET.	The	idea	of	"objects"	in	programming	started	with	the	artificial	intelligence	group	at	MIT	in	the	late	1950s	and	early	1960s.	Here,	"object"	referred	to	LISP	atoms	with	identified	properties	(attributes).[5][6]	Another
early	example	was	Sketchpad	created	by	Ivan	Sutherland	at	MIT	in	1960–1961.	In	the	glossary	of	his	technical	report,	Sutherland	defined	terms	like	"object"	and	"instance"	(with	the	class	concept	covered	by	"master"	or	"definition"),	albeit	specialized	to	graphical	interaction.[7]	Later,	in	1968,	AED-0,	MIT's	version	of	the	ALGOL	programming
language,	connected	data	structures	("plexes")	and	procedures,	prefiguring	what	were	later	termed	"messages",	"methods",	and	"member	functions".[8][9]	Topics	such	as	data	abstraction	and	modular	programming	were	common	points	of	discussion	at	this	time.	Meanwhile,	in	Norway,	Simula	was	developed	during	the	years	1961–1967.[8]	Simula
introduced	essential	object-oriented	ideas,	such	as	classes,	inheritance,	and	dynamic	binding.[10]	Simula	was	used	mainly	by	researchers	involved	with	physical	modelling,	like	the	movement	of	ships	and	their	content	through	cargo	ports.[10]	Simula	is	generally	accepted	as	being	the	first	language	with	the	primary	features	and	framework	of	an
object-oriented	language.[11]	I	thought	of	objects	being	like	biological	cells	and/or	individual	computers	on	a	network,	only	able	to	communicate	with	messages	(so	messaging	came	at	the	very	beginning	–	it	took	a	while	to	see	how	to	do	messaging	in	a	programming	language	efficiently	enough	to	be	useful).	Alan	Kay,	[1]	Influenced	by	both	MIT	and
Simula,	Alan	Kay	began	developing	his	own	ideas	in	November	1966.	He	would	go	on	to	create	Smalltalk,	an	influential	object-oriented	programming	language.	By	1967,	Kay	was	already	using	the	term	"object-oriented	programming"	in	conversation.[1]	Although	sometimes	called	the	"father"	of	object-oriented	programming,[12]	Kay	has	said	his	ideas
differ	from	how	object-oriented	programming	is	commonly	understood,	and	has	implied	that	the	computer	science	establishment	did	not	adopt	his	notion.[1]	A	1976	MIT	memo	co-authored	by	Barbara	Liskov	lists	Simula	67,	CLU,	and	Alphard	as	object-oriented	languages,	but	does	not	mention	Smalltalk.[13]	In	the	1970s,	the	first	version	of	the
Smalltalk	programming	language	was	developed	at	Xerox	PARC	by	Alan	Kay,	Dan	Ingalls	and	Adele	Goldberg.	Smalltalk-72	was	notable	for	use	of	objects	at	the	language	level	and	its	graphical	development	environment.[14]	Smalltalk	was	a	fully	dynamic	system,	allowing	users	to	create	and	modify	classes	as	they	worked.[15]	Much	of	the	theory	of
OOP	was	developed	in	the	context	of	Smalltalk,	for	example	multiple	inheritance.[16]	In	the	late	1970s	and	1980s,	object-oriented	programming	rose	to	prominence.	The	Flavors	object-oriented	Lisp	was	developed	starting	1979,	introducing	multiple	inheritance	and	mixins.[17]	In	August	1981,	Byte	Magazine	highlighted	Smalltalk	and	OOP,
introducing	these	ideas	to	a	wide	audience.[18]	LOOPS,	the	object	system	for	Interlisp-D,	was	influenced	by	Smalltalk	and	Flavors,	and	a	paper	about	it	was	published	in	1982.[19]	In	1986,	the	first	Conference	on	Object-Oriented	Programming,	Systems,	Languages,	and	Applications	(OOPSLA)	was	attended	by	1,000	people.	This	conference	marked
the	beginning	of	efforts	to	consolidate	Lisp	object	systems,	eventually	resulting	in	the	Common	Lisp	Object	System.	In	the	1980s,	there	were	a	few	attempts	to	design	processor	architectures	that	included	hardware	support	for	objects	in	memory,	but	these	were	not	successful.	Examples	include	the	Intel	iAPX	432	and	the	Linn	Smart	Rekursiv.	In	the
mid-1980s,	new	object-oriented	languages	like	Objective-C,	C++,	and	Eiffel	emerged.	Objective-C	was	developed	by	Brad	Cox,	who	had	used	Smalltalk	at	ITT	Inc.	Bjarne	Stroustrup	created	C++	based	on	his	experience	using	Simula	for	his	PhD	thesis.[14]	Bertrand	Meyer	produced	the	first	design	of	the	Eiffel	language	in	1985,	which	focused	on
software	quality	using	a	design	by	contract	approach.[20]	In	the	1990s,	object-oriented	programming	became	the	main	way	of	programming,	especially	as	more	languages	supported	it.	These	included	Visual	FoxPro	3.0,[21][22]	C++,[23]	and	Delphi[citation	needed].	OOP	became	even	more	popular	with	the	rise	of	graphical	user	interfaces,	which
used	objects	for	buttons,	menus	and	other	elements.	One	well-known	example	is	Apple's	Cocoa	framework,	used	on	Mac	OS	X	and	written	in	Objective-C.	OOP	toolkits	also	enhanced	the	popularity	of	event-driven	programming.[citation	needed]	At	ETH	Zürich,	Niklaus	Wirth	and	his	colleagues	created	new	approaches	to	OOP.	Modula-2	(1978)	and
Oberon	(1987),	included	a	distinctive	approach	to	object	orientation,	classes,	and	type	checking	across	module	boundaries.	Inheritance	is	not	obvious	in	Wirth's	design	since	his	nomenclature	looks	in	the	opposite	direction:	It	is	called	type	extension	and	the	viewpoint	is	from	the	parent	down	to	the	inheritor.	Many	programming	languages	that	existed
before	OOP	have	added	object-oriented	features,	including	Ada,	BASIC,	Fortran,	Pascal,	and	COBOL.	This	sometimes	caused	compatibility	and	maintainability	issues,	as	these	languages	were	not	originally	designed	with	OOP	in	mind.	In	the	new	millenium,	new	languages	like	Python	and	Ruby	have	emerged	that	combine	object-oriented	and
procedural	styles.	The	most	commercially	important	"pure"	object-oriented	languages	continue	to	be	Java,	developed	by	Sun	Microsystems,	as	well	as	C#	and	Visual	Basic.NET	(VB.NET),	both	designed	for	Microsoft's	.NET	platform.	These	languages	show	the	benefits	of	OOP	by	creating	abstractions	from	implementation.	The	.NET	platform	supports
cross-language	inheritance,	allowing	programs	to	use	objects	from	multiple	languages	together.	See	also:	Comparison	of	programming	languages	(object-oriented	programming)	and	List	of	object-oriented	programming	terms	Object-oriented	programming	focuses	on	working	with	objects,	but	not	all	OOP	languages	have	every	feature	linked	to	OOP.
Below	are	some	common	features	of	languages	that	are	considered	strong	in	OOP	or	support	it	along	with	other	programming	styles.	Important	exceptions	are	also	noted.[24][25][26][27]	Christopher	J.	Date	pointed	out	that	comparing	OOP	with	other	styles,	like	relational	programming,	is	difficult	because	there	isn't	a	clear,	agreed-upon	definition	of
OOP.[28]	Further	information:	Imperative	programming	and	Structured	programming	Features	from	imperative	and	structured	programming	are	present	in	OOP	languages	and	are	also	found	in	non-OOP	languages.	Variables	hold	different	data	types	like	integers,	strings,	lists,	and	hash	tables.	Some	data	types	are	built-in	while	others	result	from
combining	variables	using	memory	pointers.	Procedures	–	also	known	as	functions,	methods,	routines,	or	subroutines	–	take	input,	generate	output,	and	work	with	data.	Modern	languages	include	structured	programming	constructs	like	loops	and	conditionals.	Support	for	modular	programming	lets	programmers	organize	related	procedures	into	files
and	modules.	This	makes	programs	easier	to	manage.	Each	modules	has	its	own	namespace,	so	items	in	one	module	will	not	conflict	with	items	in	another.	Object-oriented	programming	(OOP)	was	created	to	make	code	easier	to	reuse	and	maintain.[29]	However,	it	was	not	designed	to	clearly	show	the	flow	of	a	program's	instructions—that	was	left	to
the	compiler.	As	computers	began	using	more	parallel	processing	and	multiple	threads,	it	became	more	important	to	understand	and	control	how	instructions	flow.	This	is	difficult	to	do	with	OOP.[30][31][32][33]	Main	article:	Object	(computer	science)	An	object	is	a	type	of	data	structure	that	has	two	main	parts:	fields	and	methods.	Fields	may	also	be
known	as	members,	attributes,	or	properties,	and	hold	information	in	the	form	of	state	variables.	Methods	are	actions,	subroutines,	or	procedures,	defining	the	object's	behavior	in	code.	Objects	are	usually	stored	in	memory,	and	in	many	programming	languages,	they	work	like	pointers	that	link	directly	to	a	contiguous	block	containing	the	object
instances's	data.	Objects	can	contain	other	objects.	This	is	called	object	composition.	For	example,	an	Employee	object	might	have	an	Address	object	inside	it,	along	with	other	information	like	"first_name"	and	"position".	This	type	of	structures	shows	"has-a"	relationships,	like	"an	employee	has	an	address".	Some	believe	that	OOP	places	too	much
focus	on	using	objects	rather	than	on	algorithms	and	data	structures.[34][35]	For	example,	programmer	Rob	Pike	pointed	out	that	OOP	can	make	programmers	think	more	about	type	hierarchy	than	composition.[36]	He	has	called	object-oriented	programming	"the	Roman	numerals	of	computing".[37]	Rich	Hickey,	creator	of	Clojure,	described	OOP	as
overly	simplistic,	especially	when	it	comes	to	representing	real-world	things	that	change	over	time.[35]	Alexander	Stepanov	said	that	OOP	tries	to	fit	everything	into	a	single	type,	which	can	be	limiting.	He	argued	that	sometimes	we	need	multisorted	algebras—families	of	interfaces	that	span	multiple	types,	such	as	in	generic	programming.	Stepanov
also	said	that	calling	everything	an	"object"	doesn't	add	much	understanding.[34]	Sometimes,	objects	represent	real-world	things	and	processes	in	digital	form.[38]	For	example,	a	graphics	program	may	have	objects	such	as	"circle",	"square",	and	"menu".	An	online	shopping	system	might	have	objects	such	as	"shopping	cart",	"customer",	and
"product".	Niklaus	Wirth	said,	"This	paradigm	[OOP]	closely	reflects	the	structure	of	systems	in	the	real	world	and	is	therefore	well	suited	to	model	complex	systems	with	complex	behavior".[39]	However,	more	often,	objects	represent	abstract	entities,	like	an	open	file	or	a	unit	converter.	Not	everyone	agrees	that	OOP	makes	it	easy	to	copy	the	real
world	exactly	or	that	doing	so	is	even	necessary.	Bob	Martin	suggests	that	because	classes	are	software,	their	relationships	don't	match	the	real-world	relationships	they	represent.[40]	Bertrand	Meyer	argues	in	Object-Oriented	Software	Construction,	that	a	program	is	not	a	model	of	the	world	but	a	model	of	some	part	of	the	world;	"Reality	is	a
cousin	twice	removed".[41]	Steve	Yegge	noted	that	natural	languages	lack	the	OOP	approach	of	strictly	prioritizing	things	(objects/nouns)	before	actions	(methods/verbs),	as	opposed	to	functional	programming	which	does	the	reverse.[42]	This	can	sometimes	make	OOP	solutions	more	complicated	than	those	written	in	procedural	programming.[43]
Most	OOP	languages	allow	reusing	and	extending	code	through	"inheritance".	This	inheritance	can	use	either	"classes"	or	"prototypes",	which	have	some	differences	but	use	similar	terms	for	ideas	like	"object"	and	"instance".	In	class-based	programming,	the	most	common	type	of	OOP,	every	object	is	an	instance	of	a	specific	class.	The	class	defines
the	data	format,	like	variables	(e.g.,	name,	age)	and	methods	(actions	the	object	can	take).	Every	instance	of	the	class	has	the	same	set	of	variables	and	methods.	Objects	are	created	using	a	special	method	in	the	class	known	as	a	constructor.	Here	are	a	few	key	terms	in	class-based	OOP:	Class	variables	–	belong	to	the	class	itself,	so	all	objects	in	the
class	share	one	copy.	Instance	variables	–	belong	to	individual	objects;	every	object	has	its	own	version	of	these	variables.	Member	variables	–	refers	to	both	the	class	and	instance	variables	that	are	defined	by	a	particular	class.	Class	methods	–	linked	to	the	class	itself	and	can	only	use	class	variables.	Instance	methods	–	belong	to	individual	objects,
and	can	use	both	instance	and	class	variables	Classes	may	inherit	from	other	classes,	creating	a	hierarchy	of	"subclasses".	For	example,	an	"Employee"	class	might	inherit	from	a	"Person"	class.	This	means	the	Employee	object	will	have	all	the	variables	from	Person	(like	name	variables)	plus	any	new	variables	(like	job	position	and	salary).	Similarly,
the	subclass	may	expand	the	interface	with	new	methods.	Most	languages	also	allow	the	subclass	to	override	the	methods	defined	by	superclasses.	Some	languages	support	multiple	inheritance,	where	a	class	can	inherit	from	more	than	one	class,	and	other	languages	similarly	support	mixins	or	traits.	For	example,	a	mixin	called
UnicodeConversionMixin	might	add	a	method	unicode_to_ascii()	to	both	a	FileReader	and	a	WebPageScraper	class.	Some	classes	are	abstract,	meaning	they	cannot	be	directly	instantiated	into	objects;	they're	only	meant	to	be	inherited	into	other	classes.	Other	classes	are	utility	classes	which	contain	only	class	variables	and	methods	and	are	not
meant	to	be	instantiated	or	subclassed.[44]	In	prototype-based	programming,	there	aren't	any	classes.	Instead,	each	object	is	linked	to	another	object,	called	its	prototype	or	parent.	In	Self,	an	object	may	have	multiple	or	no	parents,[45]	but	in	the	most	popular	prototype-based	language,	Javascript,	every	object	has	exactly	one	prototype	link,	up	to	the
base	Object	type	whose	prototype	is	null.	The	prototype	acts	as	a	model	for	new	objects.	For	example,	if	you	have	an	object	fruit,	you	can	make	two	objects	apple	and	orange,	based	on	it.	There	is	no	fruit	class,	but	they	share	traits	from	the	fruit	prototype.	Prototype-based	languages	also	allow	objects	to	have	their	own	unique	properties,	so	the	apple
object	might	have	an	attribute	sugar_content,	while	the	orange	or	fruit	objects	do	not.	Some	languages,	like	Go,	don't	use	inheritance	at	all.[46]	Instead,	they	encourage	"composition	over	inheritance",	where	objects	are	built	using	smaller	parts	instead	of	parent-child	relationships.	For	example,	instead	of	inheriting	from	class	Person,	the	Employee
class	could	simply	contain	a	Person	object.	This	lets	the	Employee	class	control	how	much	of	Person	it	exposes	to	other	parts	of	the	program.	Delegation	is	another	language	feature	that	can	be	used	as	an	alternative	to	inheritance.	Programmers	have	different	opinions	on	inheritance.	Bjarne	Stroustrup,	author	of	C++,	has	stated	that	it	is	possible	to
do	OOP	without	inheritance.[47]	Rob	Pike	has	criticized	inheritance	for	creating	complicated	hierarchies	instead	of	simpler	solutions.[48]	See	also:	Object-oriented	design	People	often	think	that	if	one	class	inherits	from	another,	it	means	the	subclass	"is	a"	more	specific	version	of	the	original	class.	This	presumes	the	program	semantics	are	that
objects	from	the	subclass	can	always	replace	objects	from	the	original	class	without	problems.	This	concept	is	known	as	behavioral	subtyping,	more	specifically	the	Liskov	substitution	principle.	However,	this	is	often	not	true,	especially	in	programming	languages	that	allow	mutable	objects,	objects	that	change	after	they	are	created.	In	fact,	subtype
polymorphism	as	enforced	by	the	type	checker	in	OOP	languages	cannot	guarantee	behavioral	subtyping	in	most	if	not	all	contexts.	For	example,	the	circle-ellipse	problem	is	notoriously	difficult	to	handle	using	OOP's	concept	of	inheritance.	Behavioral	subtyping	is	undecidable	in	general,	so	it	cannot	be	easily	implemented	by	a	compiler.	Because	of
this,	programmers	must	carefully	design	class	hierarchies	to	avoid	mistakes	that	the	programming	language	itself	cannot	catch.	When	a	method	is	called	on	an	object,	the	object	itself—not	outside	code—decides	which	specific	code	to	run.	This	process,	called	dynamic	dispatch,	usually	happens	at	run	time	by	checking	a	table	linked	to	the	object	to
find	the	correct	method.	In	this	context,	a	method	call	is	also	known	as	message	passing,	meaning	the	method	name	and	its	inputs	are	like	a	message	sent	to	the	object	for	it	to	act	on.	If	the	method	choice	depends	on	more	than	one	type	of	object	(such	as	other	objects	passed	as	parameters),	it's	called	multiple	dispatch.	Dynamic	dispatch	works
together	with	inheritance:	if	an	object	doesn't	have	the	requested	method,	it	looks	up	to	its	parent	class	(delegation),	and	continues	up	the	chain	until	it	finds	the	method	or	reaches	the	top.	Data	abstraction	is	a	way	of	organizing	code	so	that	only	certain	parts	of	the	data	are	visible	to	related	functions	(data	hiding).	This	helps	prevent	mistakes	and
makes	the	program	easier	to	manage.	Because	data	abstraction	works	well,	many	programming	styles,	like	object-oriented	programming	and	functional	programming,	use	it	as	a	key	principle.	Encapsulation	is	another	important	idea	in	programming.	It	means	keeping	the	internal	details	of	an	object	hidden	from	the	outside	code.	This	makes	it	easier
to	change	how	an	object	works	on	the	inside	without	affecting	other	parts	of	the	program,	such	as	in	code	refactoring.	Encapsulation	also	helps	keep	related	code	together	(decoupling),	making	it	easier	for	programmers	to	understand.	In	object-oriented	programming,	objects	act	as	a	barrier	between	their	internal	workings	and	external	code.	Outside
code	can	only	interact	with	an	object	by	calling	specific	public	methods	or	variables.	If	a	class	only	allows	access	to	its	data	through	methods	and	not	directly,	this	is	called	information	hiding.	When	designing	a	program,	it's	often	recommended	to	keep	data	as	hidden	as	possible.	This	means	using	local	variables	inside	functions	when	possible,	then
private	variables	(which	only	the	object	can	use),	and	finally	public	variables	(which	can	be	accessed	by	any	part	of	the	program)	if	necessary.	Keeping	data	hidden	helps	prevent	problems	when	changing	the	code	later.[49]	Some	programming	languages,	like	Java,	control	information	hiding	by	marking	variables	as	private	(hidden)	or	public
(accessible).[50]	Other	languages,	like	Python,	rely	on	naming	conventions,	such	as	starting	a	private	method's	name	with	an	underscore.	Intermediate	levels	of	access	also	exist,	such	as	Java's	protected	keyword,	(which	allows	access	from	the	same	class	and	its	subclasses,	but	not	objects	of	a	different	class),	and	the	internal	keyword	in	C#,	Swift,
and	Kotlin,	which	restricts	access	to	files	within	the	same	module.[51]	Abstraction	and	information	hiding	are	important	concepts	in	programming,	especially	in	object-oriented	languages.[52]	Programs	often	create	many	copies	of	objects,	and	each	one	works	independently.	Supporters	of	this	approach	say	it	makes	code	easier	to	reuse	and	intuitively
represents	real-world	situations.[53]	However,	others	argue	that	object-oriented	programming	does	not	enhance	readability	or	modularity.[54][55]	Eric	S.	Raymond	has	written	that	object-oriented	programming	languages	tend	to	encourage	thickly	layered	programs	that	destroy	transparency.[56]	Raymond	compares	this	unfavourably	to	the	approach
taken	with	Unix	and	the	C	programming	language.[56]	One	programming	principle,	called	the	"open/closed	principle",	says	that	classes	and	functions	should	be	"open	for	extension,	but	closed	for	modification".	Luca	Cardelli	has	stated	that	OOP	languages	have	"extremely	poor	modularity	properties	with	respect	to	class	extension	and	modification",
and	tend	to	be	extremely	complex.[54]	The	latter	point	is	reiterated	by	Joe	Armstrong,	the	principal	inventor	of	Erlang,	who	is	quoted	as	saying:[55]	The	problem	with	object-oriented	languages	is	they've	got	all	this	implicit	environment	that	they	carry	around	with	them.	You	wanted	a	banana	but	what	you	got	was	a	gorilla	holding	the	banana	and	the
entire	jungle.	Leo	Brodie	says	that	information	hiding	can	lead	to	copying	the	same	code	in	multiple	places	(duplicating	code),[57]	which	goes	against	the	don't	repeat	yourself	rule	of	software	development.[58]	Polymorphism	is	the	use	of	one	symbol	to	represent	multiple	different	types.[59]	In	object-oriented	programming,	polymorphism	more
specifically	refers	to	subtyping	or	subtype	polymorphism,	where	a	function	can	work	with	a	specific	interface	and	thus	manipulate	entities	of	different	classes	in	a	uniform	manner.[60]	For	example,	imagine	a	program	has	two	shapes:	a	circle	and	a	square.	Both	come	from	a	common	class	called	"Shape."	Each	shape	has	its	own	way	of	drawing	itself.
With	subtype	polymorphism,	the	program	doesn't	need	to	know	the	type	of	each	shape,	and	can	simply	call	the	"Draw"	method	for	each	shape.	The	programming	language	runtime	will	ensure	the	correct	version	of	the	"Draw"	method	runs	for	each	shape.	Because	the	details	of	each	shape	are	handled	inside	their	own	classes,	this	makes	the	code
simpler	and	more	organized,	enabling	strong	separation	of	concerns.	In	object-oriented	programming,	objects	have	methods	that	can	change	or	use	the	object's	data.	Many	programming	languages	use	a	special	word,	like	this	or	self,	to	refer	to	the	current	object.	In	languages	that	support	open	recursion,	a	method	in	an	object	can	call	other	methods
in	the	same	object,	including	itself,	using	this	special	word.	This	allows	a	method	in	one	class	to	call	another	method	defined	later	in	a	subclass,	a	feature	known	as	late	binding.	This	section	does	not	cite	any	sources.	Please	help	improve	this	section	by	adding	citations	to	reliable	sources.	Unsourced	material	may	be	challenged	and	removed.	(August
2009)	(Learn	how	and	when	to	remove	this	message)	See	also:	List	of	object-oriented	programming	languages	OOP	languages	can	be	grouped	into	different	types	based	on	how	they	support	and	use	objects:	Pure	OOP	languages:	In	these	languages,	everything	is	treated	as	an	object,	even	basic	things	like	numbers	and	characters.	They	are	designed	to
fully	support	and	enforce	OOP.	Examples:	Ruby,	Scala,	Smalltalk,	Eiffel,	Emerald,[61]	JADE,	Self,	Raku.	Mostly	OOP	languages:	These	languages	focus	on	OOP	but	also	include	some	procedural	programming	features.	Examples:	Java,	Python,	C++,	C#,	Delphi/Object	Pascal,	VB.NET.	Retrofitted	OOP	languages:	These	were	originally	designed	for	other
types	of	programming	but	later	added	some	OOP	features.	Examples:	PHP,	JavaScript,	Perl,	Visual	Basic	(derived	from	BASIC),	MATLAB,	COBOL	2002,	Fortran	2003,	ABAP,	Ada	95,	Pascal.	Unique	OOP	languages:	These	languages	have	OOP	features	like	classes	and	inheritance	but	use	them	in	their	own	way.	Examples:	Oberon,	BETA.	Object-based
languages:	These	support	some	OOP	ideas	but	avoid	traditional	class-based	inheritance	in	favor	of	direct	manipulation	of	objects.	Examples:	JavaScript,	Lua,	Modula-2,	CLU,	Go.	Multi-paradigm	languages:	These	support	both	OOP	and	other	programming	styles,	but	OOP	is	not	the	predominant	style	in	the	language.	Examples	include	Tcl,	where	TclOO
allows	both	prototype-based	and	class-based	OOP,	and	Common	Lisp,	with	its	Common	Lisp	Object	System.	The	TIOBE	programming	language	popularity	index	graph	from	2002	to	2023.	In	the	2000s	the	object-oriented	Java	(orange)	and	the	procedural	C	(dark	blue)	competed	for	the	top	position.	Many	popular	programming	languages,	like	C++,
Java,	and	Python,	use	object-oriented	programming.	In	the	past,	OOP	was	widely	accepted,[62]	but	recently,	some	programmers	have	criticized	it	and	prefer	functional	programming	instead.[63]	A	study	by	Potok	et	al.	found	no	major	difference	in	productivity	between	OOP	and	other	methods.[64]	Paul	Graham,	a	well-known	computer	scientist,
believes	big	companies	like	OOP	because	it	helps	manage	large	teams	of	average	programmers.	He	argues	that	OOP	adds	structure,	making	it	harder	for	one	person	to	make	serious	mistakes,	but	at	the	same	time	restrains	smart	programmers.[65]	Eric	S.	Raymond,	a	Unix	programmer	and	open-source	software	advocate,	argues	that	OOP	is	not	the
best	way	to	write	programs.[56]	Richard	Feldman	says	that,	while	OOP	features	helped	some	languages	stay	organized,	their	popularity	comes	from	other	reasons.[66]	Lawrence	Krubner	argues	that	OOP	doesn't	offer	special	advantages	compared	to	other	styles,	like	functional	programming,	and	can	make	coding	more	complicated.[67]	Luca	Cardelli
says	that	OOP	is	slower	and	takes	longer	to	compile	than	procedural	programming.[54]	In	recent	years,	object-oriented	programming	(OOP)	has	become	very	popular	in	dynamic	programming	languages.	Some	languages,	like	Python,	PowerShell,	Ruby	and	Groovy,	were	designed	with	OOP	in	mind.	Others,	like	Perl,	PHP,	and	ColdFusion,	started	as
non-OOP	languages	but	added	OOP	features	later	(starting	with	Perl	5,	PHP	4,	and	ColdFusion	version	6).	On	the	web,	HTML,	XHTML,	and	XML	documents	use	the	Document	Object	Model	(DOM),	which	works	with	the	JavaScript	language.	JavaScript	is	a	well-known	example	of	a	prototype-based	language.	Instead	of	using	classes	like	other	OOP
languages,	JavaScript	creates	new	objects	by	copying	(or	"cloning")	existing	ones.	Another	language	that	uses	this	method	is	Lua.	When	computers	communicate	in	a	client-server	system,	they	send	messages	to	request	services.	For	example,	a	simple	message	might	include	a	length	field	(showing	how	big	the	message	is),	a	code	that	identifies	the
type	of	message,	and	a	data	value.	These	messages	can	be	designed	as	structured	objects	that	both	the	client	and	server	understand,	so	that	each	type	of	message	corresponds	to	a	class	of	objects	in	the	client	and	server	code.	More	complex	messages	might	include	structured	objects	as	additional	details.	The	client	and	server	need	to	know	how	to
serialize	and	deserialize	these	messages	so	they	can	be	transmitted	over	the	network,	and	map	them	to	the	appropriate	object	types.	Both	clients	and	servers	can	be	thought	of	as	complex	object-oriented	systems.	The	Distributed	Data	Management	Architecture	(DDM)	uses	this	idea	by	organizing	objects	into	four	levels:	Basic	message	details	-
Information	like	message	length,	type,	and	data.	Objects	and	collections	-	Similar	to	how	objects	work	in	Smalltalk,	storing	messages	and	their	details.	Managers	-	Like	file	directories,	these	organize	and	store	data,	as	well	as	provide	memory	and	processing	power.	They	are	similar	to	IBM	i	Objects.	Clients	and	servers	-	These	are	full	systems	that
include	managers	and	handle	security,	directory	services,	and	multitasking.	The	first	version	of	DDM	defined	distributed	file	services.	Later,	it	was	expanded	to	support	databases	through	the	Distributed	Relational	Database	Architecture	(DRDA).	Design	patterns	are	common	solutions	to	problems	in	software	design.	Some	design	patterns	are
especially	useful	for	object-oriented	programming,	and	design	patterns	are	typically	introduced	in	an	OOP	context.	The	following	are	notable	software	design	patterns	for	OOP	objects.[68]	Function	object:	Class	with	one	main	method	that	acts	like	an	anonymous	function	(in	C++,	the	function	operator,	operator())	Immutable	object:	does	not	change
state	after	creation	First-class	object:	can	be	used	without	restriction	Container	object:	contains	other	objects	Factory	object:	creates	other	objects	Metaobject:	Used	to	create	other	objects	(similar	to	a	class,	but	an	object)	Prototype	object:	a	specialized	metaobject	that	creates	new	objects	by	copying	itself	Singleton	object:	only	instance	of	its	class
for	the	lifetime	of	the	program	Filter	object:	receives	a	stream	of	data	as	its	input	and	transforms	it	into	the	object's	output	A	common	anti-pattern	is	the	God	object,	an	object	that	knows	or	does	too	much.	Main	article:	Design	pattern	(computer	science)	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software	is	a	famous	book	published	in
1994	by	four	authors:	Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides.	People	often	call	them	the	"Gang	of	Four".	The	book	talks	about	the	strengths	and	weaknesses	of	object-oriented	programming	and	explains	23	common	ways	to	solve	programming	problems.	These	solutions,	called	"design	patterns,"	are	grouped	into	three	types:
Creational	patterns	(5):	Factory	method	pattern,	Abstract	factory	pattern,	Singleton	pattern,	Builder	pattern,	Prototype	pattern	Structural	patterns	(7):	Adapter	pattern,	Bridge	pattern,	Composite	pattern,	Decorator	pattern,	Facade	pattern,	Flyweight	pattern,	Proxy	pattern	Behavioral	patterns	(11):	Chain-of-responsibility	pattern,	Command	pattern,
Interpreter	pattern,	Iterator	pattern,	Mediator	pattern,	Memento	pattern,	Observer	pattern,	State	pattern,	Strategy	pattern,	Template	method	pattern,	Visitor	pattern	Main	articles:	Object-relational	impedance	mismatch,	Object-relational	mapping,	and	Object	database	Both	object-oriented	programming	and	relational	database	management	systems
(RDBMSs)	are	widely	used	in	software	today.	However,	relational	databases	don't	store	objects	directly,	which	creates	a	challenge	when	using	them	together.	This	issue	is	called	object-relational	impedance	mismatch.	To	solve	this	problem,	developers	use	different	methods,	but	none	of	them	are	perfect.[69]	One	of	the	most	common	solutions	is
object-relational	mapping	(ORM),	which	helps	connect	object-oriented	programs	to	relational	databases.	Examples	of	ORM	tools	include	Visual	FoxPro,	Java	Data	Objects,	and	Ruby	on	Rails	ActiveRecord.	Some	databases,	called	object	databases,	are	designed	to	work	with	object-oriented	programming.	However,	they	have	not	been	as	popular	or
successful	as	relational	databases.	Date	and	Darwen	have	proposed	a	theoretical	foundation	that	uses	OOP	as	a	kind	of	customizable	type	system	to	support	RDBMSs,	but	it	forbids	objects	containing	pointers	to	other	objects.[70]	In	responsibility-driven	design,	classes	are	built	around	what	they	need	to	do	and	the	information	they	share,	in	the	form
of	a	contract.	This	is	different	from	data-driven	design,	where	classes	are	built	based	on	the	data	they	need	to	store.	According	to	Wirfs-Brock	and	Wilkerson,	the	originators	of	responsibility-driven	design,	responsibility-driven	design	is	the	better	approach.[71]	SOLID	is	a	set	of	five	rules	for	designing	good	software,	created	by	Michael	Feathers:
Single	responsibility	principle:	A	class	should	have	only	one	reason	to	change.	Open/closed	principle:	Software	entities	should	be	open	for	extension,	but	closed	for	modification.	Liskov	substitution	principle:	Functions	that	use	pointers	or	references	to	base	classes	must	be	able	to	use	objects	of	derived	classes	without	knowing	it.	Interface	segregation
principle:	Clients	should	not	be	forced	to	depend	upon	interfaces	that	they	do	not	use.	Dependency	inversion	principle:	Depend	upon	abstractions,	not	concretes.	GRASP	(General	Responsibility	Assignment	Software	Patterns)	is	another	set	of	software	design	rules,	created	by	Craig	Larman,	that	helps	developers	assign	responsibilities	to	different
parts	of	a	program:[72]	Creator	Principle:	allows	classes	create	objects	they	closely	use.	Information	Expert	Principle:	assigns	tasks	to	classes	with	the	needed	information.	Low	Coupling	Principle:	reduces	class	dependencies	to	improve	flexibility	and	maintainability.	High	Cohesion	Principle:	designing	classes	with	a	single,	focused	responsibility.
Controller	Principle:	assigns	system	operations	to	separate	classes	that	manage	flow	and	interactions.	Polymorphism:	allows	different	classes	to	be	used	through	a	common	interface,	promoting	flexibility	and	reuse.	Pure	Fabrication	Principle:	create	helper	classes	to	improve	design,	boost	cohesion,	and	reduce	coupling.	See	also:	Formal	semantics	of
programming	languages	In	object-oriented	programming,	objects	are	things	that	exist	while	a	program	is	running.	An	object	can	represent	anything,	like	a	person,	a	place,	a	bank	account,	or	a	table	of	data.	Many	researchers	have	tried	to	formally	define	how	OOP	works.	Records	are	the	basis	for	understanding	objects.	They	can	represent	fields,	and
also	methods,	if	function	literals	can	be	stored.	However,	inheritance	presents	difficulties,	particularly	with	the	interactions	between	open	recursion	and	encapsulated	state.	Researchers	have	used	recursive	types	and	co-algebraic	data	types	to	incorporate	essential	features	of	OOP.[73]	Abadi	and	Cardelli	defined	several	extensions	of	System	F	n	%	2
==	0)	.collect(Collectors.toList());	In	this	example,	the	stream	takes	the	list	of	numbers,	applies	a	filter	to	keep	only	the	even	ones,	and	then	collects	the	result	into	a	new	list.	Streams	are	particularly	useful	when	I	want	to	chain	multiple	operations,	as	they	are	designed	for	lazy	evaluation—meaning	operations	are	only	performed	when	necessary.	In
Java,	exceptions	are	categorized	into	two	main	types:	checked	and	unchecked	exceptions.	Checked	exceptions	are	exceptions	that	are	checked	at	compile	time.	This	means	that	when	I	write	code	that	throws	a	checked	exception,	I	must	either	handle	it	with	a	try-catch	block	or	declare	it	with	the	throws	keyword	in	the	method	signature.	Examples	of
checked	exceptions	include	IOException	and	SQLException	.	These	exceptions	typically	represent	conditions	that	are	outside	of	the	program’s	control,	such	as	file	handling	or	network	issues.	Unchecked	exceptions,	on	the	other	hand,	are	not	checked	at	compile	time	and	are	typically	the	result	of	programming	errors,	such	as	logic	flaws	or	incorrect
data.	These	exceptions	extend	the	RuntimeException	class	and	include	exceptions	like	NullPointerException	and	ArrayIndexOutOfBoundsException	.	Since	they	are	unchecked,	Java	doesn’t	force	me	to	handle	them,	although	it’s	still	a	good	practice	to	catch	them	when	necessary.	Unchecked	exceptions	usually	indicate	that	something	has	gone	wrong
in	the	program	logic	that	should	be	fixed	by	the	developer.	Read	More:	TCS	Java	Interview	Questions	Multithreading	in	Java	is	the	process	of	executing	multiple	threads	concurrently	to	maximize	the	CPU’s	utilization.	Each	thread	represents	an	independent	path	of	execution,	allowing	me	to	perform	multiple	tasks	simultaneously,	which	can	improve
the	performance	of	my	applications.	For	example,	in	a	web	server,	multithreading	allows	the	server	to	handle	multiple	client	requests	at	the	same	time.	Java	makes	it	easy	to	implement	multithreading	using	the	Thread	class	or	the	Runnable	interface,	as	well	as	higher-level	concurrency	APIs	from	the	java.util.concurrent	package.	However,	when
multiple	threads	access	shared	resources	or	data,	issues	like	data	inconsistency	and	race	conditions	can	arise.	To	manage	this,	I	can	use	thread	synchronization	mechanisms	in	Java,	such	as	the	synchronized	keyword	or	locks	from	the	java.util.concurrent.locks	package.	By	synchronizing	critical	sections	of	code,	I	ensure	that	only	one	thread	can
execute	that	section	at	a	time,	preventing	conflicts	and	ensuring	data	consistency.	Here’s	an	example	of	synchronized	code:	public	synchronized	void	incrementCounter()	{	counter++;	}	In	this	example,	the	incrementCounter	method	is	synchronized,	which	means	that	only	one	thread	can	modify	the	counter	variable	at	a	time.	This	prevents	race
conditions	where	multiple	threads	attempt	to	update	counter	simultaneously,	which	could	lead	to	inconsistent	results.	Read	More:	Java	Projects	with	Real-World	Applications	Java	manages	memory	through	a	combination	of	automatic	memory	allocation	and	garbage	collection.	The	memory	in	Java	is	divided	into	two	main	areas:	the	heap	and	the	stack.
The	heap	is	where	objects	are	stored,	while	the	stack	holds	method	calls	and	local	variables.	When	I	create	an	object,	it’s	allocated	memory	on	the	heap,	and	once	it’s	no	longer	referenced	by	any	part	of	the	program,	the	garbage	collector	removes	it.	This	process	prevents	manual	memory	management,	which	is	a	common	source	of	bugs	in	other
programming	languages.	Despite	Java’s	efficient	memory	management	system,	memory	leaks	can	still	occur	if	objects	are	unintentionally	retained	in	memory	due	to	lingering	references.	A	memory	leak	happens	when	an	object	that	is	no	longer	needed	remains	in	memory	because	some	part	of	the	code	still	holds	a	reference	to	it.	This	can	cause	the
heap	to	fill	up,	leading	to	performance	degradation	or	even	an	OutOfMemoryError	.	To	avoid	memory	leaks,	I	ensure	that	unused	references	are	cleared	and	use	tools	like	profilers	and	the	Eclipse	Memory	Analyzer	to	track	down	issues	in	large	applications.	import	java.util.ArrayList;	import	java.util.List;	public	class	MemoryLeakExample	{	private	List
list	=	new	ArrayList();	public	void	addToList(String	item)	{	list.add(item);	//	Adding	items	to	the	list	}	public	static	void	main(String[]	args)	{	MemoryLeakExample	example	=	new	MemoryLeakExample();	//	Simulating	memory	leak	by	adding	items	in	a	loop	for	(int	i	=	0;	i	<	100000;	i++)	{	example.addToList("Item	"	+	i);	}	//	Intentionally	not	clearing
the	list	to	retain	references	//	This	can	lead	to	a	memory	leak	}	}	In	this	snippet,	the	MemoryLeakExample	class	maintains	a	list	that	continuously	adds	strings.	By	not	clearing	the	list	after	usage,	the	program	retains	references	to	many	strings,	leading	to	a	memory	leak.	If	this	pattern	continues	in	a	long-running	application,	it	can	exhaust	available
memory.	Java	8	introduced	several	powerful	features	that	significantly	improved	the	language’s	performance	and	ease	of	use.	One	of	the	most	notable	features	is	lambda	expressions,	which	allow	me	to	write	more	concise	and	readable	code	by	treating	functions	as	first-class	objects.	Lambdas	are	particularly	useful	in	reducing	boilerplate	code,
especially	when	working	with	collections	and	functional	interfaces.	Additionally,	the	Streams	API	was	introduced	in	Java	8,	enabling	functional-style	operations	on	collections,	such	as	filtering,	mapping,	and	reducing,	to	be	performed	efficiently.	Another	key	feature	introduced	in	Java	8	is	the	Optional	class,	which	helps	in	handling	null	values	more
safely.	Instead	of	dealing	with	NullPointerException	,	I	can	use	Optional	to	represent	the	possibility	of	a	value	being	present	or	absent.	Java	8	also	introduced	default	and	static	methods	in	interfaces,	allowing	me	to	provide	default	behavior	without	breaking	existing	implementations.	These	features,	combined	with	enhancements	like	the	new	Date	and
Time	API	,	improve	code	readability	and	maintainability,	making	Java	8	a	significant	milestone	in	the	evolution	of	the	language.	import	java.util.Arrays;	import	java.util.List;	public	class	Java8FeaturesExample	{	public	static	void	main(String[]	args)	{	List	names	=	Arrays.asList("Alice",	"Bob",	"Charlie",	"David");	//	Using	lambda	expression	to	filter	and
print	names	that	start	with	'C'	names.stream()	.filter(name	->	name.startsWith("C"))	.forEach(System.out::println);	}	}	In	this	example,	a	list	of	names	is	created.	The	stream()	method	is	called	to	process	the	list	as	a	stream	of	data.	The	filter	method	uses	a	lambda	expression	to	select	names	that	start	with	“C”.	Finally,	forEach	is	used	to	print	the
filtered	names.	This	concise	syntax	improves	code	readability	and	allows	for	functional-style	operations,	demonstrating	the	power	of	Java	8’s	features.	Read	More:	Object-Oriented	Programming	Java	The	Java	memory	model	defines	how	the	JVM	manages	memory	and	how	threads	interact	with	it.	Java	divides	memory	into	two	main	areas:	heap	and
stack	memory.	Heap	memory	is	used	to	store	objects,	and	it’s	shared	among	all	threads	in	an	application.	Objects	created	using	the	new	keyword	are	stored	on	the	heap,	and	garbage	collection	helps	in	freeing	up	memory	occupied	by	objects	that	are	no	longer	in	use.	In	contrast,	stack	memory	is	used	for	thread-specific	data,	such	as	method	calls,
local	variables,	and	references	to	objects.	One	key	difference	between	heap	and	stack	memory	is	scope	and	lifetime.	Stack	memory	is	much	faster	and	is	automatically	managed	by	the	JVM,	but	it’s	limited	in	size	and	tied	to	the	lifecycle	of	a	method.	When	a	method	completes,	the	stack	frame	for	that	method	is	popped	off	the	stack,	and	the	memory	is
freed.	Heap	memory,	on	the	other	hand,	is	larger	and	more	flexible	but	slower	because	it’s	managed	through	garbage	collection.	Objects	stored	in	the	heap	persist	until	they	are	no	longer	referenced,	making	heap	memory	suitable	for	objects	that	need	to	exist	beyond	a	method’s	execution.	public	class	MemoryModelExample	{	public	static	void
main(String[]	args)	{	int	localVariable	=	10;	//	Stored	in	stack	memory	MyObject	obj	=	new	MyObject();	//	Object	reference	in	stack,	object	in	heap	obj.display(localVariable);	//	Method	call	}	}	class	MyObject	{	public	void	display(int	value)	{	System.out.println("Value:	"	+	value);	//	'value'	is	a	local	variable	in	stack	}	}	In	this	example,	the
MemoryModelExample	class	demonstrates	both	stack	and	heap	memory	usage.	The	variable	localVariable	is	stored	in	the	stack	as	a	local	variable	within	the	main	method.	The	object	obj	is	created	using	the	new	keyword,	so	the	reference	to	it	is	stored	in	the	stack,	while	the	actual	MyObject	instance	is	allocated	in	the	heap.	The	display	method	is
called,	where	the	parameter	value	is	also	stored	in	the	stack.	This	snippet	illustrates	how	Java	manages	memory	allocation	for	local	variables	and	objects	within	its	memory	model.	Read	More:	Java	and	Cloud	Integration	The	Producer-Consumer	problem	is	a	classic	synchronization	problem	in	multithreaded	programming	where	one	or	more	producers
generate	data	and	add	it	to	a	shared	buffer,	while	one	or	more	consumers	retrieve	and	process	the	data	from	the	buffer.	The	challenge	lies	in	ensuring	that	the	producers	and	consumers	don’t	access	the	buffer	at	the	same	time,	which	could	lead	to	data	inconsistency.	In	Java,	I	can	solve	this	problem	by	using	synchronization	techniques	like	wait()	,
notify()	,	and	notifyAll()	to	coordinate	access	between	producers	and	consumers.	A	more	modern	and	efficient	way	to	solve	the	Producer-Consumer	problem	is	by	using	the	BlockingQueue	class	from	the	java.util.concurrent	package.	The	BlockingQueue	handles	synchronization	for	me	and	ensures	that	producers	wait	when	the	buffer	is	full,	and
consumers	wait	when	the	buffer	is	empty.	Here’s	a	simple	example:	BlockingQueue	queue	=	new	ArrayBlockingQueue(10);	Runnable	producer	=	()	->	{	try	{	queue.put(1);	}	catch	(InterruptedException	e)	{	Thread.currentThread().interrupt();	}	};	Runnable	consumer	=	()	->	{	try	{	queue.take();	}	catch	(InterruptedException	e)	{
Thread.currentThread().interrupt();	}	};	new	Thread(producer).start();	new	Thread(consumer).start();	In	this	example,	the	ArrayBlockingQueue	ensures	thread-safe	access	to	the	shared	buffer,	and	the	put()	and	take()	methods	block	the	threads	until	the	buffer	has	space	or	an	item	to	consume,	respectively.	Read	more:	Accenture	Java	interview
Questions	and	Answers	In	Java,	the	volatile	keyword	is	used	to	indicate	that	a	variable’s	value	can	be	modified	by	multiple	threads.	When	a	variable	is	declared	as	volatile	,	any	changes	made	to	it	by	one	thread	are	immediately	visible	to	all	other	threads.	This	prevents	issues	related	to	caching,	where	one	thread	may	read	a	stale	value	from	a	local
cache	instead	of	fetching	the	most	recent	value	from	main	memory.	The	volatile	keyword	ensures	that	updates	to	the	variable	are	always	written	to	and	read	from	main	memory,	maintaining	consistency	across	threads.	However,	it’s	important	to	note	that	volatile	does	not	provide	atomicity	or	mutual	exclusion.	While	it	ensures	visibility,	it	doesn’t
protect	against	race	conditions	when	multiple	threads	are	updating	the	variable	simultaneously.	For	example,	a	simple	increment	operation	x++	is	not	atomic	and	could	lead	to	incorrect	results	when	performed	by	multiple	threads.	In	such	cases,	I	would	need	to	use	synchronization	techniques	like	synchronized	blocks	or	locks	to	ensure	thread	safety.
The	volatile	keyword	is	best	suited	for	cases	where	multiple	threads	read	and	write	to	a	single	variable	without	complex	operations	or	dependencies.	class	VolatileExample	{	private	volatile	boolean	running	=	true;	public	void	run()	{	System.out.println("Thread	started.");	while	(running)	{	//	Simulate	some	work	}	System.out.println("Thread
stopped.");	}	public	void	stop()	{	running	=	false;	//	Set	the	flag	to	stop	the	thread	}	public	static	void	main(String[]	args)	throws	InterruptedException	{	VolatileExample	example	=	new	VolatileExample();	Thread	thread	=	new	Thread(example::run);	thread.start();	//	Let	the	thread	run	for	a	moment	Thread.sleep(1000);	example.stop();	//	Signal	the
thread	to	stop	thread.join();	//	Wait	for	the	thread	to	finish	}	}	In	this	example,	the	VolatileExample	class	uses	a	volatile	boolean	variable	running	to	control	the	execution	of	a	thread.	The	run	method	starts	a	loop	that	continues	as	long	as	running	is	true	.	The	stop	method	sets	running	to	false	.	The	main	method	starts	the	thread,	sleeps	for	a	second,
and	then	calls	stop	,	signaling	the	thread	to	terminate.	Because	running	is	declared	as	volatile	,	any	changes	made	by	one	thread	(in	this	case,	setting	running	to	false)	are	immediately	visible	to	the	other	thread,	ensuring	proper	termination	of	the	loop.	Read	More:	Java	Interview	Questions	for	Freshers	Part	1	Preparing	for	a	Java	interview	with	five
years	of	experience	is	important.	You	should	be	ready	to	answer	questions	about	advanced	Java	concepts.	Topics	like	object-oriented	programming,	design	patterns,	and	data	structures	are	key.	Understanding	frameworks	like	Spring	and	Hibernate	is	also	crucial.	Practicing	coding	problems	and	discussing	real-life	projects	can	help	you	shine.	Being
confident	and	clear	in	your	answers	makes	a	big	difference.	Remember	to	show	your	passion	for	Java	and	your	problem-solving	skills.	Good	luck!		Premium	Read:	Access	my	best	content	on	Medium	member-only	articles	—	deep	dives	into	Java,	Spring	Boot,	Microservices,	backend	architecture,	interview	preparation,	career	advice,	and	industry-
standard	best	practices.		Some	premium	posts	are	free	to	read	—	no	account	needed.	Follow	me	on	Medium	to	stay	updated	and	support	my	writing.		Top	10	Udemy	Courses	(Huge	Discount):	Explore	My	Udemy	Courses	—	Learn	through	real-time,	project-based	development.	▶	Subscribe	to	My	YouTube	Channel	(172K+	subscribers):	Java	Guides	on
YouTube	Are	you	preparing	for	a	Java	interview	and	have	around	5	years	of	experience	in	the	field?	Here	is	a	list	of	50	questions	to	help	you	brush	up	on	your	knowledge	and	impress	your	interviewers.	Answer:	Component	Description	Purpose	JDK	(Java	Development	Kit)	Includes	JRE,	a	compiler	(javac),	an	archiver	(jar),	and	other	tools	needed	for
Java	development.	Used	to	develop	and	compile	Java	applications.	JRE	(Java	Runtime	Environment)	Includes	the	JVM	and	standard	libraries	needed	to	run	Java	applications.	Provides	the	necessary	environment	to	run	Java	applications.	JVM	(Java	Virtual	Machine)	An	abstract	machine	that	converts	Java	bytecode	into	machine	code.	Executes	Java
bytecode	and	provides	a	runtime	environment	for	Java	applications.	2.	Explain	the	concept	of	Object-Oriented	Programming	(OOP)	in	Java.	Answer:	OOP	is	a	programming	paradigm	based	on	the	concept	of	"objects",	which	can	contain	data	and	code.	The	four	main	principles	of	OOP	are:	Encapsulation:	Wrapping	data	and	methods	into	a	single	unit.
Inheritance:	Mechanism	where	one	class	acquires	the	properties	and	behaviors	of	a	parent	class.	Polymorphism:	The	ability	of	an	object	to	take	on	many	forms,	typically	through	method	overriding	and	overloading.	Abstraction:	Hiding	the	complex	implementation	details	and	showing	only	the	essential	features	of	the	object.	3.	What	are	Java	Generics?
Give	an	example.	Answer:	Generics	enable	types	(classes	and	interfaces)	to	be	parameters	when	defining	classes,	interfaces,	and	methods.	It	allows	for	code	reusability	and	type	safety.	public	class	Box	{	private	T	t;	public	void	set(T	t)	{	this.t	=	t;	}	public	T	get()	{	return	t;	}	}	4.	Explain	the	difference	between	‘==’	and	‘equals()’	method	in	Java.
Answer:	‘==’	operator:	Compares	the	reference	of	the	objects.	‘equals()’	method:	Compares	the	content	of	the	objects.	5.	What	is	a	Java	String	Pool?	Answer:	Java	String	Pool	is	a	special	memory	region	where	Java	stores	literal	string	values.	When	a	new	string	is	created	using	a	literal,	the	JVM	checks	the	string	pool	first.	If	the	string	already	exists,
the	reference	is	returned;	otherwise,	a	new	string	is	created	in	the	pool.	6.	How	does	Java	handle	memory	management?	Answer:	Java	uses	an	automatic	memory	management	system	called	garbage	collection.	The	garbage	collector	automatically	deletes	unused	objects	to	free	up	memory,	thus	preventing	memory	leaks.	7.	Explain	the	concept	of
Multithreading	in	Java.	Answer:	Multithreading	in	Java	is	the	process	of	executing	multiple	threads	simultaneously.	Java	provides	built-in	support	for	multithreaded	programming.	It	allows	performing	multiple	operations	independently	in	parallel,	improving	application	performance.	8.	What	is	the	difference	between	ArrayList	and	LinkedList	in	Java?
Answer:	ArrayList:	Resizable	array	implementation	of	the	List	interface.	It's	better	for	storing	and	accessing	data.	LinkedList:	Doubly-linked	list	implementation	of	the	List	and	Deque	interfaces.	It's	better	for	manipulating	data,	like	adding	or	removing	elements.	9.	Describe	the	use	of	the	transient	keyword.	Answer:	The	transient	keyword	in	Java	is
used	to	indicate	that	a	field	should	not	be	serialized.	When	an	object	is	serialized,	the	fields	marked	as	transient	are	ignored	and	not	included	in	the	serialized	representation.	10.	Explain	the	concept	of	Exception	Handling	in	Java.	Answer:	Exception	Handling	in	Java	is	a	powerful	mechanism	for	handling	runtime	errors	and	maintaining	the	normal	flow
of	the	application.	It	uses	try,	catch,	finally,	and	throw	statements	to	handle	exceptions	gracefully.	11.	What	is	the	final	keyword	in	Java?	Answer:	final	variable:	Its	value	cannot	be	changed	once	assigned.	final	method:	Cannot	be	overridden	by	subclasses.	final	class:	Cannot	be	subclassed.	12.	Explain	the	difference	between	Checked	and	Unchecked
Exceptions.	Answer:	Checked	Exceptions:	Exceptions	that	are	checked	at	compile-time	(e.g.,	IOException).	Unchecked	Exceptions:	Exceptions	that	are	not	checked	at	compile-time	(e.g.,	ArithmeticException,	NullPointerException).	13.	What	is	the	use	of	the	synchronized	keyword?	Answer:	The	synchronized	keyword	in	Java	is	used	to	control	the

access	of	multiple	threads	to	any	shared	resource.	Synchronization	ensures	that	only	one	thread	can	access	the	resource	at	a	time.	14.	How	does	the	hashCode()	method	work	in	Java?	Answer:	The	hashCode()	method	returns	an	integer	value	generated	by	a	hashing	algorithm.	It	is	used	in	hashing-based	collections	like	HashMap,	HashSet,	and
Hashtable	to	determine	the	bucket	location	for	storing	objects.	15.	What	are	Java	Annotations?	Answer:	Annotations	provide	metadata	about	the	code.	They	are	used	to	provide	additional	information	to	the	compiler	and	are	not	part	of	the	program	logic.	Examples	include	@Override,	@Deprecated,	and	@SuppressWarnings.	16.	What	is	a	Singleton
class	in	Java?	Answer:	A	Singleton	class	in	Java	ensures	that	only	one	instance	of	the	class	is	created.	It	provides	a	global	point	of	access	to	the	instance.	It	is	typically	implemented	using	a	private	constructor	and	a	static	method.	17.	Explain	the	difference	between	wait(),	notify(),	and	notifyAll()	methods.	Answer:	wait():	Causes	the	current	thread	to
wait	until	another	thread	invokes	notify()	or	notifyAll()	on	the	same	object.	notify():	Wakes	up	a	single	thread	that	is	waiting	on	the	object's	monitor.	notifyAll():	Wakes	up	all	the	threads	that	are	waiting	on	the	object's	monitor.	18.	What	is	Java	Reflection	API?	Answer:	Java	Reflection	API	allows	the	inspection	and	modification	of	the	runtime	behavior	of
applications.	It	can	be	used	to	inspect	classes,	interfaces,	fields,	and	methods	at	runtime,	even	if	they	are	not	accessible	during	compile	time.	19.	What	are	Java	Streams?	Answer:	Java	Streams	are	a	new	abstraction	introduced	in	Java	8.	They	allow	functional-style	operations	on	collections	of	elements,	such	as	map-reduce	transformations.	Streams	can
be	sequential	or	parallel.	20.	What	is	a	volatile	keyword	in	Java?	Answer:	The	volatile	keyword	in	Java	is	used	to	mark	a	variable	as	"stored	in	main	memory."	Every	read	of	a	volatile	variable	will	be	read	from	the	computer's	main	memory	and	not	from	the	CPU	cache.	21.	Explain	the	concept	of	Dependency	Injection.	Answer:	Dependency	Injection	is	a
design	pattern	used	to	implement	IoC	(Inversion	of	Control).	It	allows	the	creation	of	dependent	objects	outside	of	a	class	and	provides	those	objects	to	a	class	through	different	ways	(e.g.,	constructor	injection,	setter	injection).	22.	What	is	the	difference	between	StringBuilder	and	StringBuffer?	Answer:	StringBuilder:	Non-synchronized,	faster,	and
used	in	a	single-threaded	environment.	StringBuffer:	Synchronized,	slower,	and	used	in	a	multi-threaded	environment.	23.	Explain	the	purpose	of	the	default	keyword	in	Java	8	interfaces.	Answer:	The	default	keyword	in	Java	8	allows	the	creation	of	default	methods	in	interfaces.	These	methods	can	have	a	body	and	provide	a	default	implementation
that	can	be	overridden	by	implementing	classes.	24.	What	is	the	Fork/Join	framework	in	Java?	Answer:	The	Fork/Join	framework	is	designed	for	parallelism.	It	allows	breaking	a	task	into	smaller	tasks	(forking)	and	then	joining	the	results	of	the	subtasks.	It	is	used	to	exploit	the	multiple	processors	available	in	a	system.	25.	How	does	Java	handle
memory	leaks?	Answer:	Java	handles	memory	leaks	using	garbage	collection,	which	automatically	removes	unused	objects	from	memory.	However,	poorly	written	code	(e.g.,	holding	onto	references	longer	than	necessary)	can	still	cause	memory	leaks.	26.	Explain	the	difference	between	Callable	and	Runnable	interfaces.	Answer:	Runnable:	Represents
a	task	that	can	be	executed	by	a	thread.	It	does	not	return	any	result	and	cannot	throw	checked	exceptions.	Callable:	Similar	to	Runnable	but	can	return	a	result	and	throw	a	checked	exception.	It	is	part	of	the	java.util.concurrent	package.	27.	What	is	the	Future	interface	in	Java?	Answer:	The	Future	interface	represents	the	result	of	an	asynchronous
computation.	Methods	provided	include	isDone(),	get(),	cancel(),	and	isCancelled().	It	is	used	in	conjunction	with	Callable	to	get	the	result	of	an	asynchronous	task.	28.	Explain	the	Java	Memory	Model	(JMM).	Answer:	JMM	defines	how	threads	interact	through	memory	and	what	behaviors	are	legal	in	concurrent	executions.	It	specifies	the	visibility	of
variables	across	threads	and	ordering	of	reads	and	writes	to	variables.	29.	What	are	Java	Atomic	classes?	Answer:	Atomic	classes	(like	AtomicInteger,	AtomicLong,	AtomicReference)	provide	a	way	of	updating	variables	atomically	without	using	synchronization.	They	are	part	of	the	java.util.concurrent.atomic	package	and	use	low-level	concurrency
primitives.	30.	How	does	the	volatile	keyword	differ	from	synchronized?	Answer:	volatile:	Ensures	visibility	of	changes	to	variables	across	threads	but	does	not	provide	atomicity	or	mutual	exclusion.	synchronized:	Provides	both	mutual	exclusion	and	visibility,	ensuring	that	only	one	thread	can	access	a	block	of	code	or	method	at	a	time.	31.	Explain
what	a	ThreadLocal	variable	is.	Answer:	ThreadLocal	provides	thread-local	variables.	Each	thread	accessing	such	a	variable	has	its	own	independent	copy	of	the	variable.	It	is	useful	for	maintaining	per-thread	context.	32.	What	is	the	use	of	Phaser	in	Java?	Answer:	Phaser	is	a	more	flexible	and	reusable	synchronization	barrier	that	supports	adjustable
phases,	where	threads	can	wait	for	others	to	reach	a	common	barrier	point.	It's	part	of	java.util.concurrent.	33.	How	does	Java	implement	polymorphism?	Answer:	Polymorphism	in	Java	is	implemented	through	method	overriding	(runtime	polymorphism)	and	method	overloading	(compile-time	polymorphism).	It	allows	objects	to	be	treated	as	instances
of	their	parent	class	or	interface.	34.	Explain	Java's	Stream	API	and	its	benefits.	Answer:	The	Stream	API,	introduced	in	Java	8,	allows	for	functional-style	operations	on	streams	of	elements.	Benefits	include	cleaner	and	more	readable	code,	ease	of	parallel	processing,	and	powerful	operations	like	map,	filter,	and	reduce.	35.	What	is	the	difference
between	HashMap	and	ConcurrentHashMap?	Answer:	HashMap:	Not	thread-safe	and	can	be	used	in	a	single-threaded	environment.	ConcurrentHashMap:	Thread-safe	and	allows	concurrent	read	and	write	operations.	It	divides	the	map	into	segments	to	reduce	contention.	36.	How	does	the	CompletableFuture	class	enhance	concurrency	in	Java?
Answer:	CompletableFuture	in	Java	8	enhances	concurrency	by	providing	a	way	to	write	non-blocking,	asynchronous	code.	It	supports	combinatory	operations	like	thenApply(),	thenAccept(),	and	thenCombine()	for	chaining	multiple	async	tasks.	37.	What	is	the	difference	between	yield(),	sleep(),	and	wait()?	Answer:	yield():	Hints	the	thread	scheduler
to	give	other	threads	of	the	same	priority	a	chance	to	run.	sleep():	Pauses	the	thread	execution	for	a	specified	period.	wait():	Causes	the	current	thread	to	wait	until	another	thread	invokes	notify()	or	notifyAll()	on	the	same	object.	38.	Explain	the	concept	of	ReentrantLock.	Answer:	ReentrantLock	is	a	lock	implementation	that	allows	the	same	thread	to
acquire	the	lock	multiple	times.	It	provides	more	flexibility	than	synchronized	blocks,	including	timed	lock	waits,	and	interruptible	lock	acquisition.	39.	What	is	the	ForkJoinPool	in	Java?	Answer:	ForkJoinPool	is	a	specialized	implementation	of	the	ExecutorService	that	supports	the	creation	and	processing	of	tasks	using	the	fork/join	paradigm,	where
tasks	can	be	recursively	split	into	smaller	sub-tasks.	40.	Explain	the	purpose	of	the	CountDownLatch.	Answer:	CountDownLatch	is	a	synchronization	aid	that	allows	one	or	more	threads	to	wait	until	a	set	of	operations	being	performed	in	other	threads	completes.	It	works	by	having	a	counter	that	threads	decrement	and	wait	on.	41.	What	are
SoftReference,	WeakReference,	and	PhantomReference?	Answer:	SoftReference:	References	that	are	cleared	at	the	discretion	of	the	garbage	collector	in	response	to	memory	demand.	WeakReference:	References	that	are	cleared	as	soon	as	the	garbage	collector	detects	they	are	only	weakly	reachable.	PhantomReference:	References	that	are	used	to
track	the	garbage	collection	process.	They	are	enqueued	after	the	collector	determines	that	an	object	is	phantom	reachable.	42.	Describe	the	Optional	class	introduced	in	Java	8.	Answer:	Optional	is	a	container	object	which	may	or	may	not	contain	a	non-null	value.	It	provides	methods	to	check	for	the	presence	of	a	value,	return	a	value	if	present,	or
return	a	default	value	otherwise.	It	helps	avoid	null	checks	and	NullPointerException.	43.	How	does	try-with-resources	statement	work	in	Java?	Answer:	The	try-with-resources	statement	ensures	that	each	resource	declared	within	it	is	closed	at	the	end	of	the	statement.	It	works	with	any	object	that	implements	the	AutoCloseable	interface.	44.	What	is
the	role	of	the	Default	method	in	interfaces?	Answer:	Default	methods,	introduced	in	Java	8,	allow	methods	to	have	a	body	in	interfaces.	They	enable	interfaces	to	evolve	by	adding	new	methods	without	breaking	existing	implementations.	45.	Explain	the	concept	of	Functional	Interfaces	in	Java.	Answer:	A	functional	interface	is	an	interface	with	exactly
one	abstract	method.	They	can	be	implemented	using	lambda	expressions,	method	references,	or	constructor	references.	Examples	include	Runnable,	Callable,	and	custom	interfaces	annotated	with	@FunctionalInterface.	46.	What	is	the	purpose	of	the	Collectors	class	in	Java	Streams?	Answer:	Collectors	provides	a	series	of	utility	methods	for
accumulating	elements	of	streams	into	collections,	summarizing	statistics,	and	concatenating	strings.	It	supports	common	operations	like	toList(),	toSet(),	groupingBy(),	and	partitioningBy().	47.	Explain	the	concept	of	immutable	classes	in	Java.	Answer:	Immutable	classes	are	classes	whose	instances	cannot	be	modified	after	creation.	All	fields	are
final	and	private,	and	no	setters	are	provided.	Examples	include	String	and	wrapper	classes	like	Integer	and	Double.	48.	What	is	the	difference	between	wait()	and	sleep()?	Answer:	wait():	Releases	the	lock	held	by	the	thread	and	puts	the	thread	into	waiting	state	until	another	thread	invokes	notify()	or	notifyAll()	on	the	same	object.	sleep():	Puts	the
thread	into	a	sleeping	state	for	a	specified	duration	without	releasing	the	lock.	49.	Explain	what	a	java.util.concurrent.Executor	is.	Answer:	Executor	is	an	interface	that	represents	an	object	which	executes	submitted	Runnable	tasks.	It	provides	a	way	to	decouple	task	submission	from	the	details	of	how	each	task	will	be	run,	including	thread	use	and
scheduling.	50.	How	does	Deadlock	occur	and	how	can	it	be	avoided?	Answer:	Deadlock	occurs	when	two	or	more	threads	are	blocked	forever,	waiting	for	each	other	to	release	resources.	It	can	be	avoided	by	following	practices	like	acquiring	locks	in	a	consistent	order,	using	timeout	for	lock	acquisition,	and	avoiding	unnecessary	locks.	Conclusion
These	50	questions	cover	a	wide	range	of	topics	and	concepts	that	are	essential	for	a	Java	developer	with	5	years	of	experience.	Make	sure	to	understand	the	underlying	principles	and	be	ready	to	provide	examples	or	elaborate	further	if	needed.	Good	luck	with	your	interview	preparation!	Share	—	copy	and	redistribute	the	material	in	any	medium	or
format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in
any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict
others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights
such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	image_credit	—	EducativeHello	guys,	if	you	are	preparing	for	Java	interviews	and	need	some	questions	to	revise	Object	Oriented	concepts	then	you	have	come	to	the	right	place.	In	the	past,	I	have	shared	the	best	OOP	books	and	courses	as	well	multiple	Java	interview
questions	and	in	this	article,	I	am	going	to	share	50+	object-oriented	programming	concept	questions	for	you.OOP	Interview	question	or	Object-oriented	programming	interview	question	is	an	integral	part	of	any	Java	interview.	Since	Java	is	an	Object-oriented	programming	language,	it’s	expected	from	Java	developers	that	he	is	good	in	Object-
oriented	analysis	and	design	and	familiar	with	essential	OOP	concepts	like	Abstraction,	Encapsulation,	and	Polymorphism.OOP,	Interview	question	in	Java	is	mainly	based	around	fundamental	OOPS	concepts,	and	How	those	are	implemented	in	Java,	like	Abstraction	OOP	concept	is	implemented	using	an	interface	and	abstract	class,	Encapsulation	is
using	private	keyword,	etc.Question	from	OOP	is	also	asked	as	part	of	the	Java	design	pattern	question	on	the	Senior	level	Java	interview.	On	Freshers	and	Beginners	level	interview,	OOP	Interview	Questions	are	mostly	based	on	fundamentals	only	with	some	tricky	Java	questions	like	Why	Java	doesn’t	support	multiple	inheritances,	etc.In	this	Java
article,	we	will	see	some	frequently	asked	OOP	interview	questions	and	answers.Some	question	is	very	fundamental,	and	some	Object-oriented	programming	question	is	difficult	to	answer,	but	this	mix	helps	to	learn	more.	If	you	love	to	learn	more	about	the	OOPS	design	principle,	read	10	OOP	design	principles	for	Java	programmers.without	wasting
any	more	of	your	time,	here	is	my	list	of	frequently	asked	Object-Oriented	Programming	questions	for	Java	programmers.	These	questions	have	been	collected	from	many	Java	interviews,	both	telephonic	and	face-bot-face	from	different	levels	of	Java	programmers.What	is	Class	in	Object-oriented	programming?	(answer)A	class	is	a	blueprint	to	create
objects.What	is	Object	in	OOP?	(answer)Created	from	classes,	represent	a	particular	state	of	the	class.What	is	the	abstraction	in	Java?	(answer)An	OOP	technique	to	hide	complexities	from	clients.What	is	Inheritance	in	Java?	(answer)An	object-oriented	technique	to	reuse	code	and	functionalities.What	is	Encapsulation	or	data	hiding	in	Java?
(answer)An	oop	way	to	hide	data	so	that	you	can	change	it	later	without	impacting	others.What	is	Polymorphism	in	Java	or	OOP?	(answer)provides	flexibility	to	choose	different	codes	to	run	at	runtime.What	is	the	difference	between	Polymorphism,	Overloading,	and	Overriding?	(answer)Why	Java	doesn’t	support	Multiple	Inheritance	in	Java?
(answer)When	do	you	use	interface	and	abstract	class	in	Java?(Answer)What	is	the	difference	between	static	and	dynamic	binding	in	Java?	(answer)What	is	the	difference	between	abstraction	and	polymorphism	in	Java?**	(answer)What	is	the	difference	between	the	IS-A	relationship	and	HAS-A?	(answer)IS-A	represents	Inheritance	and	HAS-A
represents	composition.Why	Java	doesn’t	support	operator	overloading?	(answer)What	is	an	abstract	class	in	Java?	(answer)What	is	an	interface	in	Java?	(answer)What	is	the	difference	between	Inheritance	and	Composition?	(answer)What	is	the	difference	between	coupling	and	cohesion?	(answer)coupling	is	the	dependency	between	different	parts	of
code	while	cohesion	is	about	the	same	part	of	code.What	is	a	constructor	in	Java?	(answer)A	special	construct	that	creates	objects.What	is	the	difference	between	Class	and	Object	in	Java	or	OOP?	(answer)What	is	the	difference	between	Inheritance	and	Polymorphism	in	Java?	(answer)What	are	SOLID	Design	Principles?	Explain	any	three	of	them
(answer)What	is	the	difference	between	Factory	and	Abstract	Factory	design	patterns?	(answer)What	is	the	difference	between	Overloading,	hiding,	shadowing	and	Overriding	in	OOP?	(answer)What	is	the	difference	between	instance	and	object	in	Java?	(answer)What	is	the	difference	between	static	and	dynamic	binding	in	Java?	(answer)What	are
SOLID	Object-oriented	principles?**	(answer)Difference	between	Abstract	Class	and	Interface	in	Java?	(answer)Difference	between	private,	protected,	and	public	modifiers	in	Java?	(answer)What	is	constructor	chaining?	(answer)Difference	between	pass	by	value	and	pass	by	reference?	(answer)Difference	between	abstraction	and	encapsulation?
(answer)Difference	between	association,	composition,	and	aggregation?	(answer)Can	you	explain	Open	Closed	Design	Principle?	(answer)What	is	an	Observer	design	pattern?	When	should	you	use	it?	(answer)What	is	the	difference	between	hiding	and	shadowing	in	OOP?**	(answer)Can	you	override	a	static	method	in	Java?	(answer)What	is	the
difference	between	state	and	strategy	design	patterns?	(answer)What	is	the	difference	between	a	class	and	an	instance?	(answer)What	is	the	difference	between	Factory	and	Abstract	Factory	design	patterns?	(answer)What	is	the	difference	between	Dependency	injection	and	Factory	Pattern?	(answer)What	is	method	overloading	in	OOP	or	Java?
(answer)What	is	the	method	overriding	in	OOP	or	Java?**	(answer)Is	Java	a	pure	object-oriented	language?	if	not	why?	(answer)What	are	the	rules	of	method	overloading	and	overriding	in	Java?**	(answer)The	difference	between	method	overloading	and	overriding?	(answer)Can	we	overload	a	static	method	in	Java?	(answer)Can	we	override	the	static
method	in	Java?**	(answer)Can	we	override	a	private	method	in	Java?**	(answer)What	is	the	covariant	method	overriding	in	Java?**	(answer)Can	we	change	the	argument	list	of	an	overriding	method?**	(answer)Can	we	override	a	method	that	throws	runtime	exception	without	throws	clause?	(answer)Can	we	override	the	final	method	in	Java?
(answer)What	is	the	default	method	of	Java	8?**	(answer)What	is	an	abstract	class	in	Java?	(answer)**What	is	an	interface	in	Java?	What	is	the	real	use	of	an	interface?**	(answer)What	are	the	differences	between	Abstract	class	and	interface?**	(answer)Can	we	make	a	class	abstract	without	an	abstract	method?**	(answer)Can	we	make	a	class	both
final	and	abstract	at	the	same	time?**	(answer)Can	we	overload	or	override	the	main	method	in	Java?**	(answer)What	problem	is	solved	by	the	Strategy	pattern	in	Java?**	(answer)Which	OOP	concept	Decorator	design	Pattern	is	based	upon?**	(answer)When	to	use	the	Singleton	design	pattern	in	Java?**	(answer)What	is	the	difference	between	State
and	Strategy	Patterns?**	(answer)What	is	the	difference	between	Association,	Aggregation,	and	Composition	in	OOP?	(answer)What	is	the	difference	between	Decorator,	Proxy,	and	Adapter	patterns	in	Java?	(answer)What	is	the	difference	between	Composition	and	Inheritance	in	OOP?(answer)That’s	all	about	some	of	the	frequently	asked	OOP
Interview	Questions	for	Java	Programmers.	Most	likely	you	already	know	answers	to	these	fundamental	Object-oriented	programming,	design,	and	pattern-related	questions.If	you	don’t	see	the	links	and	revise	those	concepts.	You	can	use	this	list	to	revise	all	key	object	oriented	programming	concepts	before	your	interview.	If	you	think	a	popular	OOP
question	is	missing	from	the	list,	feel	free	to	share	in	the	comments	and	I	will	include	it	in	this	list.Most	of	these	questions	are	also	useful	for	JavaScript	and	Python	developers	because	both	JavaScript	and	Python	are	also	object-oriented	programming	languages.Other	Interview	Questions	you	may	like	to	Prepare35	Python	Interview	Questions	for
Beginners	(python	questions)50+	SQL	and	Database	Phone	Interview	questions	(SQL	questions)130+	Java	Interview	Questions	with	Answers	(list)17	Spring	AOP	Interview	Questions	with	Answers	(list)40+	Object-Oriented	Interview	Questions	with	Answers	(questions)15	Spring	Data	JPA	Interview	Questions	(list)20+	JUnit	Interview	Questions	for	Java
developers	(questions)10	Dynamic	Programming	Problems	for	Coding	interviews	(questions)25	Spring	Security	Interview	Questions	with	Answers	(questions)5	Best	Courses	to	learn	Java	Programming	(best	courses)20	Spring	MVC	Interview	Questions	with	answers	(spring	questions)Thanks	for	reading	this	article	so	far.	If	you	find	these	Object-
Oriented	Programming	interview	questions	useful	then	please	share	them	with	your	friends	and	colleagues.	If	you	have	any	questions	or	feedback	then	please	drop	a	note.P.	S.	—	If	you	are	new	to	object	oriented	programming	and	need	some	resources	to	learn	OOP	then	you	can	also	check-out	these	free	object	oriented	programming	courses	to	start
with.	5.3K	Do	you	need	help	preparing	for	your	Java	OOPS	interview?	Object-oriented	programming	(OOP)	is	a	core	aspect	of	Java,	and	a	strong	understanding	of	its	principles	is	essential.	This	guide	covers	the	top	50	Java	OOPS	interview	questions	and	answers,	addressing	both	fundamental	and	advanced	topics.		With	clear	explanations	and	practical
examples,	these	questions	will	help	you	approach	technical	rounds	with	confidence.	Fun	Fact:	According	to	the	TIOBE	Index	(2025),	Java	remains	a	top	5	programming	language,	with	over	9	million	developers	using	it.	A	major	reason	for	its	popularity	is	its	strong	OOPS	foundation.	Here	is	a	list	of	basic	Java	Object	Oriented	Programming	questions
and	answers	for	interviews:		What	are	the	four	main	principles	of	Object-Oriented	Programming?	The	four	main	principles	of	OOPS	are:	Encapsulation	–	Wrapping	data	and	methods	into	a	single	unit	(class)	to	restrict	direct	access	to	data.	Abstraction	–	Hiding	implementation	details	and	exposing	only	necessary	functionalities	using	abstract	classes	or
interfaces.	Inheritance	–	Allowing	one	class	(child)	to	inherit	properties	and	methods	from	another	(parent)	to	promote	reusability.	Polymorphism	–	Allowing	a	single	method	or	operator	to	have	multiple	implementations	(method	overloading	and	method	overriding).	How	is	abstraction	different	from	encapsulation	in	Java?	Abstraction	hides
unnecessary	details	and	exposes	only	the	essential	parts.	It	is	implemented	using	abstract	classes	and	interfaces.	Encapsulation,	on	the	other	hand,	restricts	direct	access	to	an	object’s	data	by	using	access	modifiers	like	private,	protected,	and	public.	While	abstraction	is	about	hiding	implementation,	encapsulation	is	about	data	security	and	integrity.
What	is	method	overloading	and	method	overriding?	Provide	examples.	Method	Overloading:	When	multiple	methods	in	the	same	class	have	the	same	name	but	different	parameter	lists.		Example:	class	MathOperations	{					int	add(int	a,	int	b)	{	return	a	+	b;	}					double	add(double	a,	double	b)	{	return	a	+	b;	}	}	Method	Overriding:	When	a	subclass
provides	a	specific	implementation	of	a	method	already	defined	in	its	superclass.	Example:	class	Parent	{					void	display()	{	System.out.println(“Parent	class	method”);	}	}	class	Child	extends	Parent	{					@Override					void	display()	{	System.out.println(“Child	class	method”);	}	}	Why	is	multiple	inheritance	not	supported	in	Java?	Multiple	inheritance
is	not	supported	in	Java	to	avoid	ambiguity	issues	caused	by	the	diamond	problem.	If	two	parent	classes	have	the	same	method,	the	compiler	cannot	determine	which	one	to	inherit.	Instead,	Java	provides	interfaces,	allowing	a	class	to	implement	multiple	interfaces	without	ambiguity.	Here	are	some	common	Java	Object	Oriented	Programming
interview	questions	for	freshers:		What	is	the	difference	between	a	class	and	an	object?	A	class	is	a	blueprint	for	creating	objects.	It	defines	attributes	(variables)	and	behaviors	(methods).	An	object	is	an	instance	of	a	class	with	specific	values	assigned	to	its	attributes.	Example:	class	Car	{					String	brand;					void	drive()	{	System.out.println(“Car	is
driving”);	}	}	Car	myCar	=	new	Car();	//	Object	creation	What	is	the	significance	of	the	‘this’	keyword	in	Java?	See	also		"What	Are	Your	Hobbies"	Interview	Question	with	Sample	AnswersThe	this	keyword	refers	to	the	current	instance	of	a	class.	It	is	used	to:	Differentiate	instance	variables	from	local	variables	when	they	have	the	same	name.	Call
another	constructor	in	the	same	class.	Pass	the	current	instance	as	a	parameter.	Example:	class	Employee	{					String	name;					Employee(String	name)	{	this.name	=	name;	}	}	How	does	Java	achieve	runtime	polymorphism?	Java	achieves	runtime	polymorphism	through	method	overriding.	The	overridden	method	in	a	subclass	is	called	at	runtime
based	on	the	object	type,	even	when	referenced	by	a	parent	class.	Example:	class	Animal	{					void	sound()	{	System.out.println(“Animal	makes	a	sound”);	}	}	class	Dog	extends	Animal	{					void	sound()	{	System.out.println(“Dog	barks”);	}	}	Animal	obj	=	new	Dog();	obj.sound();	//	Outputs:	Dog	barks	What	is	the	purpose	of	the	‘super’	keyword	in	Java?
The	super	keyword	is	used	to	refer	to	the	immediate	parent	class.	It	can	be	used	to:	Call	the	parent	class	constructor.	Access	parent	class	methods.	Access	parent	class	variables.	Example:	class	Parent	{					void	display()	{	System.out.println(“Parent	method”);	}	}	class	Child	extends	Parent	{					void	show()	{	super.display();	}	}	Let’s	go	through
important	Java	OOPS	programming	interview	questions	and	answers	for	experienced	candidates:		How	does	Java	manage	memory	with	respect	to	objects?	Java	uses	automatic	memory	management	with	the	help	of	the	Garbage	Collector	(GC).	When	an	object	is	no	longer	referenced,	the	GC	removes	it	to	free	up	memory.	Java	memory	consists	of:
Heap	(stores	objects).	Stack	(stores	method	calls	and	local	variables).	Method	area	(stores	class	structures).	What	are	the	different	types	of	constructors	in	Java?	Default	Constructor	–	No	parameters,	initializes	objects	with	default	values.	Parameterized	Constructor	–	Takes	arguments	to	initialize	instance	variables.	Copy	Constructor	–	Copies	values
from	one	object	to	another.	Example:	class	Student	{					String	name;					Student(String	name)	{	this.name	=	name;	}	}	How	is	object	cloning	implemented	in	Java?	Java	supports	shallow	cloning	using	the	clone()	method	from	the	Cloneable	interface.	Example:	class	Employee	implements	Cloneable	{					String	name;					Employee(String	name)	{
this.name	=	name;	}					protected	Object	clone()	throws	CloneNotSupportedException	{									return	super.clone();					}	}	Deep	cloning	requires	manual	copying	of	referenced	objects.	What	is	a	shallow	copy	and	deep	copy	in	Java?	Shallow	Copy:	Copies	field	values	but	does	not	create	new	referenced	objects.	Changes	in	the	original	object	affect	the
copied	object.	Deep	Copy:	Creates	a	new	copy	of	referenced	objects,	making	them	independent.	Example	of	deep	copy:	class	Address	{					String	city;					Address(String	city)	{	this.city	=	city;	}	}	class	Person	{					String	name;					Address	address;					Person(String	name,	Address	address)	{									this.name	=	name;									this.address	=	new
Address(address.city);	//	Deep	Copy					}	}	If	you	have	2	years	of	experience,	you	might	come	across	such	Java	and	OOPS	interview	questions:	Why	did	you	choose	Java	for	your	career?	Describe	a	situation	where	you	had	to	debug	a	complex	object-oriented	issue.	How	did	you	solve	it?	If	you	had	to	redesign	an	existing	system	to	improve	reusability,
which	OOPS	principles	would	you	focus	on	and	why?	These	interview	questions	for	OOPS	in	Java	are	for	candidates	with	three	years	of	experience:		What	is	the	most	challenging	Java	project	you	have	worked	on?	How	do	you	handle	a	situation	where	your	team	disagrees	on	the	best	OOPS	approach	for	a	project?	If	you	need	to	implement	a	flexible
payment	system,	which	OOPS	concepts	would	you	apply	and	how?	See	also		Top	70+	Selenium	Interview	Questions	and	Answers	These	Java	Object	Oriented	interview	questions	are	for	candidates	with	5	years	of	experience:		What	design	patterns	have	you	used	in	your	Java	projects,	and	why?	How	do	you	mentor	junior	developers	on	OOPS	principles?
You	need	to	refactor	a	monolithic	Java	application	into	a	microservices-based	architecture.	How	would	you	approach	the	OOPS	design?	If	you	are	at	a	senior	level	and	have	around	10	years	of	experience,	you	might	come	across	such	Java	OOPS	interview	questions:	How	has	your	understanding	of	OOPS	evolved	over	the	years?	Have	you	ever	had	to
optimize	an	object-oriented	Java	system	for	performance?	How	did	you	do	it?	Given	an	existing	Java	application	with	tight	coupling,	how	would	you	refactor	it	to	follow	SOLID	principles?	You	might	also	come	across	OOPS	concepts	in	Java	interview	questions	like	these:		What	is	the	difference	between	an	interface	and	an	abstract	class?	An	interface
defines	a	contract	that	classes	must	follow.	It	contains	only	abstract	methods	(before	Java	8)	and	allows	default	and	static	methods	(from	Java	8).	Interfaces	support	multiple	inheritance	since	a	class	can	implement	multiple	interfaces.	An	abstract	class	can	have	both	abstract	and	concrete	methods.	It	can	include	constructors	and	instance	variables.
Unlike	interfaces,	abstract	classes	can	have	method	implementations	but	do	not	support	multiple	inheritance.	How	does	Java	implement	multiple	inheritance?	Java	does	not	support	multiple	inheritance	through	classes	to	avoid	ambiguity	(diamond	problem).	Instead,	it	uses	interfaces.	A	class	can	implement	multiple	interfaces,	allowing	it	to	inherit
behaviors	from	different	sources	without	conflicts.	What	is	dynamic	method	dispatch	in	Java?	Dynamic	method	dispatch,	also	called	runtime	polymorphism,	is	the	process	where	method	calls	are	resolved	at	runtime	based	on	the	object’s	actual	type,	not	the	reference	type.	These	are	some	core	Java	OOP	questions	and	answers	for	interviews:		What	is
an	association,	aggregation,	and	composition	in	Java?	Association:	A	relationship	between	two	classes	where	both	objects	exist	independently	(e.g.,	Student	and	Teacher).	Aggregation:	A	weaker	relationship	where	the	child	can	exist	independently,	but	the	parent	owns	it	(e.g.,	Department	and	Employee).	Composition:	A	strong	relationship	where	the
child	object’s	existence	depends	on	the	parent	(e.g.,	Car	and	Engine).	What	is	the	role	of	access	modifiers	in	OOPS?	Access	modifiers	control	visibility	of	class	members:	private	–	Accessible	only	within	the	class.	default	–	Accessible	within	the	same	package.	protected	–	Accessible	in	the	same	package	and	subclasses.	public	–	Accessible	from
anywhere.	Let’s	go	through	some	advanced	Java	Object	Oriented	interview	questions	and	answers:		What	are	the	different	types	of	design	patterns	in	Java?	Creational	Patterns	–	Singleton,	Factory,	Builder.	Structural	Patterns	–	Adapter,	Composite,	Proxy.	Behavioral	Patterns	–	Strategy,	Observer,	Command.	How	do	lambda	expressions	fit	into	Java’s
object-oriented	model?	Lambda	expressions	provide	a	concise	way	to	implement	functional	interfaces	(interfaces	with	a	single	abstract	method).	They	allow	inline	implementations	without	creating	a	separate	class.	Example:	interface	Calculator	{					int	operate(int	a,	int	b);	}	Calculator	add	=	(a,	b)	->	a	+	b;	System.out.println(add.operate(5,	3));	//
Outputs:	8	What	is	the	function	of	reflection	in	Java	OOPS?	Reflection	allows	introspection	and	manipulation	of	classes,	methods,	and	fields	at	runtime.	It	is	useful	in	frameworks,	serialization,	and	dependency	injection.	See	also		Top	30+	Pega	Interview	Questions	and	Answers	for	2025Example:	Class	obj	=	Class.forName(“java.util.ArrayList”);
System.out.println(obj.getMethods());	Also	Read	-	Top	25+	Python	OOPs	Interview	Question	(2025)	You	should	also	take	a	look	at	these	OOPS	in	JavaScript	interview	questions:		How	is	object-oriented	programming	implemented	in	JavaScript?	JavaScript	is	prototype-based,	meaning	objects	inherit	from	other	objects	instead	of	classes.	Objects	can	be
created	using	constructors,	prototypes,	or	ES6	classes.	What	is	prototypal	inheritance,	and	how	does	it	differ	from	classical	inheritance?	Prototypal	inheritance	allows	objects	to	inherit	properties	directly	from	another	object	using	the	prototype	chain.	Unlike	classical	inheritance,	which	relies	on	class	hierarchies,	JavaScript	objects	inherit	dynamically.
Example:	let	parent	=	{	greet:	function()	{	console.log(“Hello”);	}	};	let	child	=	Object.create(parent);	child.greet();	//	Outputs:	Hello	Also	Read	-	Top	20	PHP	OOPs	Interview	Questions	and	Answers	Here	are	some	coding	Java	object	oriented	interview	questions:	Write	a	Java	program	to	demonstrate	method	overriding.	class	Parent	{					void	show()	{
System.out.println(“Parent	class	method”);	}	}	class	Child	extends	Parent	{					@Override					void	show()	{	System.out.println(“Child	class	method”);	}	}	public	class	Test	{					public	static	void	main(String[]	args)	{									Parent	obj	=	new	Child();									obj.show();	//	Outputs:	Child	class	method					}	}	Implement	a	singleton	class	in	Java.	class	Singleton	{
				private	static	Singleton	instance;					private	Singleton()	{}	//	Private	constructor					public	static	Singleton	getInstance()	{									if	(instance	==	null)	{													instance	=	new	Singleton();									}									return	instance;					}	}	Create	an	interface	and	implement	it	in	multiple	classes	with	different	behaviors.	interface	Animal	{					void	sound();	}	class	Dog
implements	Animal	{					public	void	sound()	{	System.out.println(“Dog	barks”);	}	}	class	Cat	implements	Animal	{					public	void	sound()	{	System.out.println(“Cat	meows”);	}	}	public	class	Test	{					public	static	void	main(String[]	args)	{									Animal	a1	=	new	Dog();									Animal	a2	=	new	Cat();									a1.sound();									a2.sound();					}	}	Also	Read	-	Top
20	C++	OOPs	Interview	Questions	and	Answers	Implement	a	real-world	example	of	polymorphism	in	Java.	Create	a	Java	class	that	follows	the	principle	of	encapsulation.	Write	a	Java	program	to	demonstrate	the	Factory	Design	Pattern.	Implement	an	abstract	class	with	a	concrete	method	and	abstract	methods.	Also	Read	-	Top	30+	C#	OOPs	Interview
Questions	and	Answers	What	is	the	difference	between	instance	and	static	methods?	How	does	Java	handle	object	destruction?	Can	a	constructor	be	private?	If	yes,	when	would	you	use	it?	What	is	the	difference	between	early	binding	and	late	binding	in	Java?	Also	Read	-	Top	20	OOPs	ABAP	Interview	Questions	and	Answers	Here	are	some	common
interview	questions	for	OOPS	in	Java	in	MCQ	form:		Which	of	the	following	is	not	an	OOPS	principle?	a)	Encapsulationb)	Inheritancec)	Compilationd)	Polymorphism	Object-oriented	programming,	or	OOPs,	is	a	programming	paradigm	that	implements	the	concept	of	objects	in	the	program.	It	aims	to	provide	an	easier	solution	to	real-world	problems	by
implementing	real-world	entities	such	as	inheritance,	abstraction,	polymorphism,	etc.	in	programming.	OOPs	concept	is	widely	used	in	many	popular	languages	like	Java,	Python,	C++,	etc.List	of	30	Best	OOPs	Interview	Questions	with	AnswersIn	the	upcoming	section,	you	will	get	hands-on	with	the	most	asked	interview	questions	on	Object-oriented
programming	with	their	perfect	answers.	So,	if	you	are	a	beginner	and	experienced	in	programming	go	through	the	questions	and	ace	your	upcoming	interviews.1.	What	is	Object	Oriented	Programming	(OOPs)?Object	Oriented	Programming	is	a	programming	paradigm	where	the	complete	software	operates	as	a	bunch	of	objects	talking	to	each	other.
An	object	is	a	collection	of	data	and	the	methods	which	operate	on	that	data.2.	Why	OOPs?The	main	advantage	of	OOP	is	better	manageable	code	that	covers	the	following:The	overall	understanding	of	the	software	is	increased	as	the	distance	between	the	language	spoken	by	developers	and	that	spoken	by	users.Object	orientation	eases	maintenance
by	the	use	of	encapsulation.		One	can	easily	change	the	underlying	representation	by	keeping	the	methods	the	same.The	OOPs	paradigm	is	mainly	useful	for	relatively	big	software.The	programming	paradigm	is	referred	to	the	technique	or	approach	of	writing	a	program.	The	programming	paradigms	can	be	classified	into	the	following	types:	1.
Imperative	Programming	ParadigmIt	is	a	programming	paradigm	that	works	by	changing	the	program	state	through	assignment	statements.	The	main	focus	in	this	paradigm	is	on	how	to	achieve	the	goal.	The	following	programming	paradigms	come	under	this	category:Procedural	Programming	Paradigm:	This	programming	paradigm	is	based	on	the
procedure	call	concept.	Procedures,	also	known	as	routines	or	functions	are	the	basic	building	blocks	of	a	program	in	this	paradigm.Object-Oriented	Programming	or	OOP:	In	this	paradigm,	we	visualize	every	entity	as	an	object	and	try	to	structure	the	program	based	on	the	state	and	behavior	of	that	object.Parallel	Programming:	The	parallel
programming	paradigm	is	the	processing	of	instructions	by	dividing	them	into	multiple	smaller	parts	and	executing	them	concurrently.2.	Declarative	Programming	ParadigmDeclarative	programming	focuses	on	what	is	to	be	executed	rather	than	how	it	should	be	executed.	In	this	paradigm,	we	express	the	logic	of	a	computation	without	considering	its
control	flow.	The	declarative	paradigm	can	be	further	classified	into:Logical	Programming	Paradigm:	It	is	based	on	formal	logic	where	the	program	statements	express	the	facts	and	rules	about	the	problem	in	the	logical	form.Functional	Programming	Paradigm:	Programs	are	created	by	applying	and	composing	functions	in	this	paradigm.Database
Programming	Paradigm:	To	manage	data	and	information	organized	as	fields,	records,	and	files,	database	programming	models	are	utilized.4.	What	is	the	difference	between	Structured	Programming	and	Object-Oriented	Programming?Structured	Programming	is	a	technique	that	is	considered	a	precursor	to	OOP	and	usually	consists	of	well-
structured	and	separated	modules.	It	is	a	subset	of	procedural	programming.	The	difference	between	OOPs	and	Structured	Programming	is	as	follows:Object-Oriented	ProgrammingStructural	ProgrammingProgramming	that	is	object-oriented	is	built	on	objects	having	a	state	and	behavior.A	program's	logical	structure	is	provided	by	structural
programming,	which	divides	programs	into	their	corresponding	functions.It	follows	a	bottom-to-top	approach.It	follows	a	Top-to-Down	approach.Restricts	the	open	flow	of	data	to	authorized	parts	only	providing	better	data	security.No	restriction	to	the	flow	of	data.	Anyone	can	access	the	data.Enhanced	code	reusability	due	to	the	concepts	of
polymorphism	and	inheritance.Code	reusability	is	achieved	by	using	functions	and	loops.Methods	work	dynamically,	making	calls	based	on	object	behavior	and	the	need	of	the	code	at	runtime.Functions	are	called	sequentially,	and	code	lines	are	processed	step	by	step.Modifying	and	updating	the	code	is	easier.Modifying	the	code	is	difficult	as
compared	to	OOPs.Data	is	given	more	importance	in	OOPs.Code	is	given	more	importance.5.	What	are	some	commonly	used	Object-Oriented	Programming	Languages?OOPs	paradigm	is	one	of	the	most	popular	programming	paradigms.	It	is	widely	used	in	many	popular	programming	languages	such	as:C++JavaPythonJavaScriptC#Ruby6.	What	are
the	advantages	and	disadvantages	of	OOPs?Advantages	of	OOPsDisadvantages	of	OOPsOOPs	provides	enhanced	code	reusability.	The	programmer	should	be	well-skilled	and	should	have	excellent	thinking	in	terms	of	objects	as	everything	is	treated	as	an	object	in	OOPs.The	code	is	easier	to	maintain	and	update.Proper	planning	is	required	because
OOPs	is	a	little	bit	tricky.It	provides	better	data	security	by	restricting	data	access	and	avoiding	unnecessary	exposure.OOPs	concept	is	not	suitable	for	all	kinds	of	problems.Fast	to	implement	and	easy	to	redesign	resulting	in	minimizing	the	complexity	of	an	overall	program.The	length	of	the	programs	is	much	larger	in	comparison	to	the	procedural
approach.7.	What	is	a	Class?A	class	is	a	building	block	of	Object-Oriented	Programs.	It	is	a	user-defined	data	type	that	contains	the	data	members	and	member	functions	that	operate	on	the	data	members.	It	is	like	a	blueprint	or	template	of	objects	having	common	properties	and	methods.8.	What	is	an	Object?An	object	is	an	instance	of	a	class.	Data
members	and	methods	of	a	class	cannot	be	used	directly.	We	need	to	create	an	object	(or	instance)	of	the	class	to	use	them.	In	simple	terms,	they	are	the	actual	world	entities	that	have	a	state	and	behaviour.	C++	#include	using	namespace	std;	//	defining	class	class	Student	{	public:	string	name;	};	int	main()	{	//	creating	object	Student	student1;	//
assigning	member	some	value	student1.name	=	"Rahul";	cout

